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Abstract
The winter 2014–15 measles outbreak in the United States represents a significant crisis in the emergence of a function-
ally extirpated pathogen. Conclusively linking this outbreak to decreases in the measles, mumps, and rubella (MMR) vac-
cination rate (driven by anti-vaccine sentiment) is critical to motivating MMR vaccination. We used the NOVA modeling
platform to build a stochastic, spatially-structured, individual-based SEIR model of outbreaks, under the assumption that
R0’7 for measles. We show this implies that herd immunity requires vaccination coverage of greater than approxi-
mately 85%. We used a network structured version of our NOVA model that involved two communities, one at the rel-
atively low coverage of 85% coverage and one at the higher coverage of 95%, both of which had 400-student schools
embedded, as well as students occasionally visiting superspreading sites (e.g., high-density theme parks, and cinemas).
These two vaccination coverage levels are within the range of values occurring across Californian counties. Transmission
rates at schools and superspreading sites were arbitrarily set to respectively 5 and 15 times the background community
rates. Simulations of our model demonstrate that a ‘send unvaccinated students home’ policy in low coverage counties
is extremely effective at shutting down outbreaks of measles.
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1 Introduction

A recent reemergence of measles in the United States (US)

provides us with an opportunity to think more deeply about

vaccinations in modern societies and their role in providing

protection against viral diseases. Measles is caused by a

Morbillivirus (family: Paramyxoviridea) that is expelled

from an infected individual during coughing or sneezing.

The virus can remain infectious for several hours in the

form of aerosolized droplets or fomite residues.1 As a con-

sequence of near life-long immunity in individuals that

have recovered from the disease, prior to large-scale vacci-

nation programs in Europe and the US, measles outbreaks

were seasonally linked to new cohorts of young children

entering school for the first time.2 The endemicity of this

process in developed-world cities with relatively large

populations (at least 250,000–500,000 individuals) has

been explained with the aid of mathematically sophisti-

cated models.3 Such seasonal outbreak patterns were elimi-

nated in the US after 1981, through the implementation of

the highly effective MMR (measles, mumps, and rubella)

blanket vaccination program.4

The principle of vaccinating a population beyond its

‘herd immunity’ threshold lies at the heart of the contin-

ued success of the US MMR vaccination program.5,6 The

threshold ratio of vaccinated to unvaccinated individuals

for a herd-immune population—that is, a population where

this ratio is sufficiently high to cause infections to rapidly

fade out rather than break out—depends upon the basic

reproductive number, R0 (the expected number of cases

caused by the index case when the whole population is

susceptible) for the disease. The value of R0 itself is influ-

enced by the infectiousness of the pathogen, the lengths of

time that infected individuals are infectious, and contact
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rates among individuals within the community. Thus, in

essence, the efficacy of a vaccination program depends on

both complex immunological and sociological processes

that can be analyzed in the context of dynamic game

theory.7

The immunological process component involves opti-

mal ages and dosages at which to administer vaccines of

various kinds (e.g., attenuated live vaccine, as in MMR, or

inactivated virus, as in Polio iPV), or segments of virus

(influenza injections), one dose, or primary dose plus boos-

ters, and so on. MMR vaccinations may fail if the primary

dose is given to infants protected by maternal antibodies

transferred during breastfeeding.8 Avidity testing can be

used to assess the efficacy of vaccinations, but such tests

are not widely utilized in measles epidemiology.9 Thus, it

can be misleading to take statistical data at face value

regarding assumed levels of protection for given levels of

a vaccination coverage.10

The sociological process component enables misinfor-

mation to shape outbreak dynamics. For example, influ-

enced by a now retracted study in The Lancet in 1998 that

linked the MMR vaccine to autism,11 a significant minor-

ity of parents, clustered in particular geographic regions

around the US, refused MMR vaccinations for their chil-

dren.12 Even after the retraction of the study, these groups

persist, and despite major efforts to remediate the damage,

recent results confirm that these self-proclaimed ‘anti-vax-

xers’ respond negatively to educational campaigns,

becoming more staunchly opposed to vaccination.13 As a

consequence of anti-vaxxer groups, including those

opposed for religious purposes (e.g., the Amish in Ohio),

measles outbreaks are now more likely in the US: the US

Center for Disease Control reported 911 cases for the

decade 2001–201114 (which is fewer than 8 cases per

month), while close to 650 cases were reported in 2014,

dominated by an outbreak in the Amish community in

Ohio, and more than 100 for the month of January in

2015, dominated by cases in California linked to the so-

called Disneyland outbreak.15,16 Thus, the sociological

component includes a growing ‘small world’ phenomenon,

with individuals making contact at high-density entertain-

ment venues that increasingly draw in patrons from con-

siderable distances, and then serve as superspreading

centers for highly contagious respiratory diseases, such as

measles. ‘Superspreading’, defined as a process whereby a

few individuals cause a disproportionately large number of

secondary infections, has been considered in terms of indi-

vidual and environmental heterogeneity.17 Individuals

with high pathogen shedding rates18 or longer periods of

infectiousness19 may lead to greater numbers of secondary

infections. Similarly, superspreading centers can be

viewed as discrete environmental patches that provide

opportunities for significantly higher contact rates than

predicted by expected movement patterns.20

Spatial heterogeneity in the effective vaccination rates

alters the likelihood with which outbreaks occur. While

herd immunity levels may exist at some of the originating

sites of individuals visiting a superspreading center, unvac-

cinated individuals from those sites may carry the disease

back to keep feeding a continuous low-level stream of

cases at sites with vaccination rate above herd immunity

levels, as well as starting self-sustaining outbreaks at sites

with vaccination rates below levels of herd immunity.

Here we evaluate the efficacy of ‘stay-at-home regula-

tions’ for children who are not vaccinated in schools were

outbreaks occur.

2 Model
2.1 Motivation for approach

The prevailing paradigm for modeling epidemics is to use

systems of deterministic or stochastic differential or differ-

ence equations that divide the population into disease (e.g.,

susceptible, infected, recovered, immune) classes,21 as

well as other demographic (e.g., age, sex) and behavioral

classes (e.g., sexually active) and to fit transmission,

recovery, and other relevant parameters using least-squares

estimation (LSE)22 or maximum likelihood estimation

methods,23 based on comparisons of model output and

empirical data. Going back to the work of Frost and

Reed,24 a second approach to modeling epidemics has

been to follow transmission chains (incidence and off-

spring distributions, transmission trees and branches), gen-

erally considered within the framework of semi-Markov

branching process.24 While the first paradigm is most use-

ful for large-scale epidemics involving infection of a sig-

nificant fraction of the susceptible population (i.e., . 1%),

which is the case inter alia for influenza—HIV, tuberculo-

sis, and measles in unvaccinated communities; the second

is most useful for emerging diseases when the proportion

infected is often very small (i.e., \ 0:1%)—which

includes inter alia, severe acute respiratory syndrome

(SARS),25 Ebola,26 and hantavirus, as well as measles in

communities where vaccination rates are close to herd

immunity threshold levels.27,16

Given our interest in disease outbreak dynamics, the

analysis we report here is based on a Markov chain

approach, as discussed by Chowell et al.21 but modified to

allow for the implications and efficacy of key interven-

tions that need to be evaluated. Our model of a measles

outbreak in the US explicitly includes barring unvacci-

nated school-aged individuals from attending schools

when one or more individuals in the school have come

down with the measles because of its viability as an affec-

tive outbreak mitigation strategy.28 It also allows for a

reduction in transmission rates over the course of the epi-

demics due to behavioral changes that reduce contact rates

in the community between sick and uninfected individuals,
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as the community becomes more informed on how to

interact with infectious individuals.29 Our model is unique

in dividing the population at risk during a measles epi-

demic into school and general population components with

a metapopulation structure that includes vaccination levels

both above and below the herd immunity level.

2.2 Transmission chain formulation

Most epidemiological models begin by dividing the popu-

lation into ‘susceptible’ (S) and ‘infected + infectious’

(I) individuals, while elaborations discriminate between

‘exposed but not yet infectious’ (E) and ‘infectious’ (I), as

well as ‘removed’ (R),30 where the latter can be broken

down into ‘dead’ (D) and ‘recovered with some level of

acquired immunity’ (V).31 Although some measles models

have treated the epidemic as an SIR process,32 many others

have included an E class.33 We include the latter because

in measles the period that an individual is infected but not

yet infectious is of similar length to the infectious period

itself (in fact it can be more than twice as long—cf. Table

3 in Cauchemez and Ferguson34), and this can have a

destabilizing impact on the dynamics of epidemiological

process.35 We emphasized here that we need not specify

the size of the S-class involved, but rather assume some

level of ‘risk-of-infection’ that is proportional to the num-

ber of infected individuals in the subpopulation of interest,

where subpopulations form an interconnected metapopula-

tion, and ‘risks-of-infection are subpopulation dependent.

Thus we model the disease incidence rate in time period

½t, t + 1� (t in our case will represent days) in subpopula-

tion j containing Ij(t) infectious individuals, using Monte

Carlo methods, from a Poisson distributions with mean as

follows:

mj(t)= ljI(t) ð1Þ

to generate Ei(t + 1): (Note: Roman font S, I, and E

name the class, while italic font Ij(t) and Ej(t) refer to

the number of individuals at time t in so-named class of

subpopulation j).

Ignoring the population designation index j for the

moment, the more usual approach to characterizing trans-

mission is to assume that, for some ‘transmission intensity

constant’ b . 0, the incidence rate is determined by the

expression m(t)=bS(t)I(t) in the case of density-

dependent transmission and by m(t)=bS(t)I(t)=N (t) in

the case of frequency-dependent transmission.31,36,37 This

approach has been generalized to assume that, for some

population scaling constant K . 0, transmission is more

generally characterized by the following function, which

includes both density-dependent (K ! ‘) and frequency-

dependent (K ! 0 with appropriate rescaling of b) trans-

mission as limiting cases:

m(t)=bS(t)
I(t)

1+N (t)=K
ð2Þ

This latter characterization requires that both S and N are

known when, by analogy (i.e., comparison of Equation (3)

and (2), with index j ignored), the values of S and N are

used to determine the value as follows:

l(S,N )=
bS

1+N=K
ð3Þ

An alternative approach is to use the fact that when out-

breaks occur I � S, or equivalently, S’N , so that

l’ b
1=N + 1=K

, or when N � K, l’Kb. Thus, in relatively

large populations, the incidence rate becomes density-

independent and can be modeled by a stochastic Poisson

process, following the approach we take below.

The model focuses on individuals in the population that

become exposed to an individual in state I at time t, and

follows their progress over time as they make transitions

from states E to I to R (most of which are now in state

V—i.e., immune, but a small percent transition to D—i.e.,

death). In a totally naı̈ve population, each individual in

state I at time t generates on average l individuals in state

E at time t + 1, using Poisson statistics. In a population in

which a proportion pv are vaccinated, this expected num-

ber is modified by the value (1� pv): specifically, if the
Poisson drawing yields r individuals to be assigned the

state E, then each of these individuals is moved to state V

with probability pv. Thus, in short, the incidence rate at

time t + 1 will follow a Poisson distribution with expected

value (1� pv)lI(t). If we use the time variable s to denote

individuals at time t that became infected with the disease

at time (t � s), then letting U (t, s) represents the number

of exposed individuals at time t who were exposed s days

ago, it follows that the dependent variable U (t, 0) is the

incidence at time t: i.e., as follows:

U (t + 1, 0)= (1� pv)lI(t) ð4Þ

For the sake of simplicity, assume the latent period ½0, s1�
is the same for all individuals. Similarly, assume all indi-

viduals have the same infectious period ½s1, s1 + s2 � 1�.
Thus, for all individuals exposed to the pathogen at any

time t= 1, 2, . . ., s1 . 0 and s2 . 0 are constants rather

than random variables across individuals. It then follows

that these individuals are infected (exposed) but not yet

infectious for the first s1 � 1 periods of time, becoming

infectious s1 units after first exposure, and that they remain

infectious for s2 � 1 periods of time. Thus, all individuals

make the transition to R status s1 + s2 periods of time after

first exposure. Under these assumptions of constant latent

and infectious periods, and assuming that individuals enter

the R state only after s2 units of time, it follows that:
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I(t)=
Xs2

k = 1

U (t, s1 + k � 1) ð5Þ

The most efficient implementation of a homogeneous ver-

sion of the model is to aggregate individuals by states as

follows:

Qi(t)[U (t, i� 1), i= 1, :::, s1 + s2

(i.e., time units since the exposure/transmission), and

model how numbers in each state change over time using

the following equations (where the notation

x;POISSON ½m� implies a random drawing from a

Poisson distribution with parameter m) as follows:

Q1(t+ 1);POISSON½(1� pv)l
Xs2

k = 1

Qk + s1�1(t)�

Qi(t+ 1)=Qi�1(t) i= 2, :::, s1 + s2

ð6Þ

2.3 Individual-based NOVA model

A less efficient, but more comprehensive implementation

that allows us to keep track of individuals as they may

move through space or exhibit variation in susceptibility,

length of latent period (i.e., variation in s1 among individu-

als), length of infection (variation in s2), and risk of mor-

tality while ill (not included in the above model), all

possibly as functions of genetic or individual level envi-

ronmental factors, is to follow the progress of each individ-

ual recruited to the population using Equation (4) to link

individuals to parents, rather than Equation (5) (which only

counts incidence at an aggregated group level). Here we

took this individual-based approach, because we wanted to

keep track of the ‘next-generation distribution’ to obtain

estimates of R0 from this distribution, with the details of

how to do this described elsewhere.19,26 We also wanted to

follow individuals as they are influenced by spatial factors:

in our case children in the local community environments

with different vaccination coverage rates and including

time spent at schools where transmission rates are higher.

The constant values we used for the latent and infectious

period designators were s1 = 7 and s2 = 3 days, based on

data listed elsewhere (cf. Table 3 in Cauchemez and

Ferguson34), with the assumption of constancy due to the

fact that the natural variability in these numbers across

individuals is not well characterized in specific commu-

nities. There are many reasons why s2, in particular, is not

well known, including the fact that in different commu-

nities, detection of disease and implementation of treat-

ment vary greatly. Thus, the true infectious period is

considerably longer than s2 = 3 days, but the value we use

represent an estimate of the ‘effective’ number of days dur-

ing which individuals are available to transmit to other

members of their local community prior to isolation and

treatment. Aside from this, estimates of the incidence rate

parameter l will, to a large extent, vary collinearly with

values of s1 and s2.

2.4 Spatial structure and incidence rates

Many different factors affect transmission and hence inci-

dence rates: changes in the virulence of strains over time,38

the movement behavior of individuals within populations,

the size of those populations, disease detection and treat-

ment protocols that influence how early symptoms are

recognized, and how strict patient isolation practices are. It

is therefore unsurprising that estimates of R0 for highly

contagious diseases such as measles can vary by several

hundred percent. We based our selection for the parameter

l introduced in Equation (1) on our expectation that in an

unvaccinated population the value of R0 should be some-

where in the range ½6:2, 7:7�.10 Following a heuristic pro-

cedure of trying out different values of l, with s1 = 7 and

s2 = 3, we found that l= 2:2 yielded a value of R0 = 6:6
for the case pv = 0. Further, we ran the model 10 times for

each of the values of pv = 0:05, 0:1, . . . , 0:75, 0:80, to
obtain estimates of R0(pv) from the next-generation distri-

bution that our simulations produced after running the

model for 40 days after the introduction of a single index

case (i.e., patient zero) into the population.

The results of these estimates are plotted in Figure 1. In

this figure, we see that the regression line through the

simulation data intersects the point (pv,R0)= (1, 0) as

expected (i.e., the absence of susceptible individuals neces-

sarily implies R0 = 0). This regression line also indicates

that pv = 0:85 is the herd immunity threshold vaccination

level, because R0(0:85)= 1. This estimate could have

been made directly by drawing a line from the point (1, 0)
to (0, 6:6) and calculating the point on this line that would

Figure 1. A regression line through estimates of R0 obtained
via simulation for populations with different levels of vaccination
coverage (pv). Note that pv = 0:85 corresponds to R0 = 1,
implying that a vaccination rate of 85% coverage is needed to
achieve the herd immunity threshold.
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yield R0 = 1 or, equivalently, using the following well-

known formula for critical coverage in a homogenous,

well-mixed population: 1� 1=R0 = 1� 1=6:6= 0:85.
The data generated from our simulations, however, show

that 10 runs are sufficient to provide an excellent estimate

of the value for each of the points plotted in Figure 1.

Following the above procedure for estimating a suitable

value for l, once s1 and s2 had been selected from reports

in the literature, and a target value of R0 identified, we

designed a spatial configuration that could be used to test

the efficacy of a ‘send unvaccinated students home’ policy

for schools to control outbreaks in situations where the

vaccination coverage in the school is relatively low. In par-

ticular, we set up two communities, one vaccinated around

the herd immunity threshold level (low coverage: 85%)

and one vaccinated well above the herd immunity thresh-

old level (high coverage: 95%). For purposes of compari-

son, we refer to the data provided in Figure 2. These data

reflect a 92.3% for the recommended two doses of MMR.

True protection is likely somewhat higher because of indi-

vidual who have received a one-dose vaccination. The val-

ues specified in Figure 3, when infected individuals in

under-vaccinated communities are not sent home, corre-

spond to the transition matrix (order of variables, follow-

ing Figure 3, is ‘superspreading sites’, ‘95% community’,

‘school in 95% community’, ‘85% community’, ‘school in

85% community 2’) as follows:

T0 =

0:2 0:01 0 0:01 0

0:4 0:74 0:75 0 0

0 0:25 0:25 0 0

0:4 0 0 0:74 0:75
0 0 0 0:25 0:25

0
BBBB@

1
CCCCA

and when individuals are sent home to the matrix as

follows:

Figure 2. A graphical image of Table 1 from the 2013–2014
Kindergarten Immunization Assessment Results, California
Department of Public Health (CDPH), Immunization Branch,
available from CDPH (download pdf).
MMR: measles, mumps, rubella

Figure 3. The spatial structure of our stochastic model depicting probabilities of daily movements of individuals between home
community and school as well as visits to superspreading sites, such as entertainment centers. The black and green transition rates
correspond to the stochastic matrix T0 provided in the text. When the purple values are substituted for the green values in the
under-vaccinated community (i.e., 85% vaccination coverage) we obtain a ‘send home policy’ effect, modeled by stochastic matrix Th.
The implications of these transition rates for time spent at different sites are discussed in the text. The solid blue input vector
represents a small probability that during the course of an outbreak infected individuals may be imported into the system from an
origin other than the two explicitly modeled communities. The incidence rate parameter values, indicated in red, are l= 2:2 within
the community, but 5 times this rate within schools and 15 times this rate at the superspreading site.
vs: versus
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Th =

0:2 0:01 0 0:01 0

0:4 0:74 0:75 0 0

0 0:25 0:25 0 0

0:4 0 0 0:94 0:95
0 0 0 0:25 0:05

0
BBBB@

1
CCCCA

The dominant eigenvectors that characterize the stable

probability distributions associated with stochastic

matrices T0 and Th respectively (i.e., the eigenvectors cor-

responding the eigenvalue that has value 1) are

(0:009, 0:3715, 0:124, 0:3715, 0:124)0 and (0:010, 0:415,
0:138, 0:415, 0:022)0.

2.5 Accessing the model

As mentioned above, the model was built using the NOVA

modeling platform, which is downloadable for free at the

Novamodeler website.39,26,40 The NOVA file for the

model is available at the Getz Lab Website (NOVA mod-

els download: Measles, Spring Simulation Conference,

2016). A web-based implementation of the model can be

accessed at the NOVA OnLine Model Library (username

and password are both ‘numerus’).

3 Results

The first study we undertook was to identify a value for

the transmission parameter l and then to characterize how

the disease outbreak threshold, as represented by R0(pv),
varied with vaccination coverage parameter pv 2 ½0, 1�.
We settled on the value l= 2:2, which we confirm corre-

sponds to R0(0)= 6:6 (unvaccinated population) and

R0(0:85)= 1 (herd immunity threshold for vaccination

coverage), as illustrated in Figure 1.

We then used our simulation model to compare out-

break sizes in a five compartment system that has the

structure depicted in Figure 3: viz., two communities, one

with 85% vaccination coverage the other with 95% vacci-

nation coverage, both containing schools where students

experience a disease transmission hazard that is 5 times

the background community rate and both sending individ-

uals to superspreading sites (represented by a single spatial

compartment, but may in fact be a collection of sites) for

limited periods of time where the disease transmission

hazard is 15 times that of the background community and,

hence, 3 times that at schools. We note, however, that in

the school environment we took account of the fact that

the population size is relatively small compared with the

community at large. So in the school environment we

reduced the risk of transmission by a factor

(Sschool=Nschool(t), where we set Nschool = 400 and

Sschool(t) is the number of individuals at that school that

remained susceptible in not yet being infected or sent

home by time t). From the dominant eigenvector associ-

ated with the matrices T0 we confirm that under a ‘no

action’ policy infectious individuals in both communities

spend approximately 74% of their time in the local com-

munity/home environment (incidence rate is given by l),

25% at school (incidence rate 5l), and 1% at superspread-

ing centers/sites (incidence rate 15l). Similarly, from the

dominant eigenvector associated with the matrix Th it fol-

lows that under a ‘send unvaccinated students home’ pol-

icy, during the course of an outbreak, infectious

individuals in the first community spend their time, as

specified for T0 while, individuals in the second commu-

nity now spend approximately 94% of their time at in the

local community/home environment, only 5% at school,

and again approximately 1% of their time at superspread-

ing centers/sites.

We run our spatial model 100 times for each of the two

cases: ‘no action’ and a ‘send unvaccinated students home’

policy. In each case, each run terminated either with the

fading of the outbreak (no infectious cases possible) or

after 200 days, which ever came first. The average and

standard deviation of the results obtained from each set of

100 runs are reported in Table 1; density plots of resulting

distributions of case number are illustrated in Figure 4.

4 Discussion

When modeling highly heterogeneous and stochastic pro-

cesses, while endeavoring to maintain generalizability

beyond the particular set of circumstances under consider-

ation, a number of simplifying assumptions must be made.

At each step in this process, uncertainty inevitably

increases. Hence model validation is particularly difficult

because being stochastic, any outbreak we observed is but

one manifestation of a distribution of possible trajectories

that can vary from fadeout to dramatic outbreak for an epi-

demic governed by the identical set of process parameter

values (cf. results presented by Lloyd26 in the context of

the recent Ebola outbreak in West Africa). Thus, we focus

here on results from an analysis that allows us to evaluate

the efficacy of ‘send home’ policies as a way of extin-

guishing an outbreak of a highly transmissible disease,

such as measles. We can do this without knowing the pre-

cise values of actual epidemiological process parameters,

if we are in the right ball park with regard to the general

character of the epidemic, because it is the comparative

results from fully-vaccinated versus under-vaccinated

Table 1. Comparison of number of cases under ‘no action’
versus ‘send unvaccinated students home’ policy.

Communities No action Send home

85% vaccination coverage 348± 403 2:4± 3:5
95% vaccination coverage 42± 50 1:6± 1:5
To superspreader site 4:9± 6:1 0:2± 0:6
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communities that is critical. We know that we are in the

right ball park because our model is based on R0 values,

transmission rates, various contact rates, and infectious-

ness period durations obtained from the literature,10 as

well as vaccination rates obtained from the California

Department of Health. In addition, we stress that there,

each measles outbreak appears to follow its own unique

set of parameter values, as societal structures evolve and

population levels of susceptibility change with ever chang-

ing vaccination policies. Nonetheless, the strength of the

methods presented here lie in their ability to be easily

adjusted based on information gathered from current out-

breaks. Thus, while our model is undeniably a simplified

realization of any outbreak, the model provides evidence

for the considerable efficacy of a ‘send unvaccinated stu-

dents home’ policy during outbreaks of measles in com-

munities that are ‘close to’ versus ‘well above’ the herd

immunity vaccination coverage threshold.

Interestingly, our policy of sending home students dur-

ing possible outbreaks had a significant impact on the

number of cases resulting in communities with both rela-

tively high (95%) and relatively low (85%) vaccination

rates. The mean total number of cases (obtained by adding

columns in Table 1) without implementing a ‘send unvac-

cinated students home’ policy was 395, yet when 4 out of

5 unvaccinated children are sent home in the low vacci-

nated community alone (i.e., the policy was not applied to

the high vaccinated community), the total mean number of

cases dropped below 5. The mean duration of these out-

breaks (data not shown in Table 1) was also significantly

different between the two cases: for the ‘no action’ case it

was 251 days compared with 93 days when the ‘send

unvaccinated students home’ policy was implemented in

the low vaccination community alone.

The data, supported by our model, strongly suggest that

the 2014–15 measles outbreak in California occurred as a

result of the variable vaccination coverage across different

communities and the mixing of these communities at

superspreading centers. While herd immunity levels may

be met at origin locations of visitors to major superspread-

ing centers, such as Disneyland, the ephemeral populations

that form each day may have cumulative vaccination rates

below the average for California as a whole. Over time,

with high enough turnover rates and population sizes, rare

disease recurrences are bound to be introduced when

superspreading assemblages are below elevated herd

immunity thresholds that are associated with high-density

tourist aggregation or entertainment centers, which then

act as superspreading centers. Conventional wisdom in

epidemiology pushes vaccination as the solution to herd

immunity, but emerging evidence shows that anti-MMR

vaccine populations only become less likely to vaccinate

after intervention campaigns.13 Rather than attempting to

reform the attitudes of the substantial minority of people

who oppose vaccination for reasons varying from religious

objection to distrust of the medical or political establish-

ment, we offer an easily implemented, and politically neu-

tral, mitigation technique. By sending students without

proof of vaccination home from school at a success rate of

around 80% (interventions are rarely 100% successful)

when an outbreak is imminent or present, the number of

resulting cases dramatically declines. This policy is effec-

tive in communities with relatively high vaccination rates

(95%), as well as communities near the herd immunity

threshold (85%).

While the 2014 measles epidemic has been effectively

suppressed, its reappearance in the US after apparent era-

dication suggests that future outbreaks should not be unex-

pected, nor should we be unprepared if one occurs. In

addition, the methods applied here can be easily adapted

to epidemics of other pathogens, particularly those that are

highly transmissible, like influenza virus or coronavirus.

In these cases, superspreading centers are likely to play a

similarly important role in the spread of the outbreak.

Gaining insight into the mechanisms underlying this pro-

cess is vital, and the conceptual model outlined above

offers an opportunity to do so, in addition to simulating

Figure 4. Probability density plots of log number of cases from
100 runs of the model for each of the with and without
implementation of the ‘send unvaccinated students home’ policy
cases: (a) low vaccination rate community (85%); (b) high
vaccination rate community (95%) (note: the abscissa scale is
different from case (a).
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the impact of various ‘send unvaccinated students home’

policies. Our empirical model of the regional processes

also provides a relative risk surface for future disease out-

breaks that may be especially useful in the case of another

epidemic emerging from a superspreading center.
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