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A B S T R A C T

This article presents two new mathematical models, an information forgetting curve (IFC) model and a memory
reception fading and cumulating (MRFC) model, to examine forgetting and learning behaviors of individuals
during an infectious disease epidemic. Both models consider how epidemic prevalence and community behavior-
change information may affect agent emotions and subsequently influence an individual's behavior changes
during an epidemic. The IFC model utilizes a forgetting curve to process epidemic information, and the MRFC
model formulates disease information variations using the Itô diffusion process. Sensitivity analysis and simu-
lation comparisons showed that the MRFC model more accurately describes the epidemic with high lethal rate
gets high attention. The author also demonstrated that MRFC model has higher sensitivity parameters and is
more flexible on wide ranges of infection rates than the IFC model. However, the IFC model is a better suited for
widespread, low-risk mortality epidemics, such as seasonal influenza, the infection information and protective
behavior have close relationships among the susceptible population. An agent-based simulation model also
developed to mimic the epidemic prevalence of the 2009 Chicago H1N1 using public available historical data
sets by IFC model.

1. Introduction

Human disease awareness and related behavior changes during
disease epidemics have recently attracted considerable research atten-
tion (Polgar, 1962). In order to be more accurately predict a disease
epidemic and estimate its potential impacts, however, a comprehensive
understanding of information dissemination within human contact
networks and the effects of this information on human emotions,
awareness, and behavior must increase. Extensive literature and studies
have investigated how information affects human behaviors, but
minimal research has focused on human memory and forgetting/
learning processes related to disease information, or the process in
which information may be forgotten and relearned during an epidemic
episode. This paper proposes two new mathematical models to in-
vestigate the effects of information in disease transmission, including
the forgetting and learning phenomenon.

The human brain cannot store an infinite amount of retrieved in-
formation. In 1968, Shiffrin and Atkinson (1969) first classified
memory as long term and short term. Engle, Tuholski, Laughlin, and
Conway (1999) defined short-term memory as retainable for a short
period of time (usually from 6 to 600 s) but unable to be manipulated;
however, they did not detail how long-term or short-term memory

relates to people forgetting information. Ebbinghaus (1913) experi-
mentally investigated how the process of forgetting proceeds with
influences of time or daily events, hypothesizing that, although a
memory series is gradually forgotten, memories that have been
learned twice fade more slowly compared to memories that have been
learned once. Wingfield and Byrnes (2013) proposed a “forgetting
curve” to show the process of memory loss over a period from 20 min
to 31 days. A recent paper has indicated that the people learn language
also following the forgetting curve (Weltens & Cohen, 1989), and
experiments have been conducted to increase understanding of the
learning and forgetting phenomenon (Badiru, 1992; Bailey, 1989). In
1985, Brainerd, Kingma, and Howe (1985) concluded that forgetting
is governed by various laws and therefore requires unique theoretical
assumptions.

Notable learning and forgetting mathematical models have been
proposed. In 1976, Carlson and Rowe (1976) introduced the variable
regression variable forgetting (VRVF) model, and, in 1990,
Elm'Aghraby (1990) proposed the variable regression invariant for-
getting (VRIF) model, which corrected errors in previous forgetting
models and accommodated a finite horizon. In 1996, Jaber and
Bonney (1996) proposed the learn-forget curve model (LFCM), which
showed that forgetting is dependent on some factors such as the
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learning slope, the quantity produced and the minimum production
breaks. In 1997, Jaber and Bonney (1997) compared these three
models, and in recent years, Jaber, Kher, and Davis (2003) reviewed
factors that influence forgetting and incorporated the job similarity
factor into the LFCM. In 2002, Sikström and Jaber (2002) provided an
elaborate review of forgetting curves in psychology and industrial
engineering literature. Because the previous papers did not consider
the forgetting phenomenon in disease, however, this paper proposes
an information forgetting curve model (IFC) to describe how disease
information fades over time during an epidemic, following a forget-
ting curve through time and thereby influencing final disease
memory. In 2012, Sikström & Jaber updated their research in the
modeling of learning and forgetting area (Sikström & Jaber, 2012).
They proposed a Depletion-Power-Integration-Latency (DPIL) Model.
This model considered the depletion of the encoding resource as
forgetting and learning behavior when the system repetitively per-
forms a task. More than fitting the historical dataset and calculate the
settings of optimal performance, this model discussed how learning
can interact with the forgetting by modeling the repetitively encoding
can increase the memory strength.

Stochastic factors can influence the information perception process
and new information can diversely affect human memory when agents
receive new information and forget previous information. Researchers
(Slovic, 2016) have shown that biased media coverage, misleading
personal experiences, and anxieties can cause people to process in-
formation with unwarranted confidence or uncertain judgment. Zhao,
Wu, Kuang, Bi, and Ben-Arieh (2018) also discussed the stochastic
change rate of perception to infectious disease risk. This paper proposes
a memory reception fading and cumulating (MRFC) model to describe
the stochastic phenomenon of human memory as it pertains to disease
information based on learning and forgetting.

Agents have unique understandings based on identical informa-
tion, and they react with distinct switch behaviors. In 2009, Chen
(2009) concluded that agents learn prevalence through the spread of
information and can adjust human behavior during a disease epi-
demic. Funk, Gilad, Watkins, and Jansen (2009) found that the spread
of disease awareness significantly decreases the infection rate, and
Kiss, Cassell, Recker, and Simon (2010) proved that the diffusion of
disease information increases risk awareness and causes the host po-
pulation to take infection prevention measures. In 2015, Zhao, Wu,
Kuang, and Ben-Arieh (2015) proposed a disease model using a spatial
evolutionary game to illustrate the impact of information dissemina-
tion on human behavior in an epidemic, proving that how an agent
feels depends on information content and context (Nahl & Bilal, 2007).
In other words, agents demonstrate unique perspectives for the same
disease information, resulting in diverse emotional responses. When
disease information is positive, agents may have minimal concerns
about the disease; negative information, however, may increase
agent's awareness. Hence, certain types of information could alter
agents’ moods or emotions (Pessoa, 2008). Chen, Bi, Zhao, Ben-Arieh,
and Wu (2017) also modeled how disease information, such as the
number of infected individuals and the number of susceptible in-
dividuals who choose the switching behaviors, impact agents' fears
about the epidemic. This paper applies an agent-based model to de-
termine how disease information can cause diverse human behaviors,
as well as use of the one-factor-at-a-time method (OFAT) to conduct
sensitivity analysis for various parameter settings in the IFC and MRFC
models, highlighting the influence of parameter settings for the model
and comparing agents’ epidemic behaviors using the IFC, MRFC, and
no-memory models.

This paper also discusses the 2009 H1N1 influenza epidemic. By
combining historical infection data in affected cities with corresponding
population characteristics, the authors restored the 2009 H1N1 pre-
valence in Chicago, a typical H1N1-affected city. This paper also in-
vestigates how the phenomenon of memory fading and behavior-swit-
ched protection influence epidemic spreading.

2. Information forgetting curve model

2.1. Contact network and disease information

Contact networks have been widely applied to many implementa-
tions of disease transmission (Altizer et al., 2003; Bansal, Grenfell, &
Meyers, 2007; Lloyd-Smith, Schreiber, Kopp, & Getz, 2005). Zhao et al.
(2015) introduced the concept of disease information dissemination
and its effect on epidemic disease transmission by proposing that agents
gain disease information from two layers: local and global contact
networks. Local information is gained from neighboring agents, while
global information is acquired from all locations. The researchers in
Zhao et al. (2015) used a spatial evolutionary game to figure out if
agents switch behavior based on payoff. In general, local contact net-
works contain many social cliques and more readily transmit patho-
gens, while global contact networks are usually dominated by non-face-
to-face contacts and random long-distance connections (Klovdahl,
1985).

Rapidly increasing advanced technology and popularity of the in-
ternet, social media, and new-media broadcasting channels have re-
volutionized the ways about information transmission and human
communication. Sahneh and Scoglio (2013) changed traditional global
and local contact network divisions to disease transmission and in-
formation transmission divisions. A disease transmission contact net-
work (DTCN) is comprised of daily face-to-face contacts, such as family
members, neighbors, and colleagues, while an information transmission
contact network (ITCN) includes all contacts in an agent’s social media.
In general, contacts in a DTCN are a subset of contacts in an ITCN
(Fig. 2.1).

Recent advancements in the information technology industry and
the Internet of Things are spurring a rapid transition into an informa-
tion era. Subsequently, disease information and its dissemination via
modern information systems, such as social media, virtual commu-
nities, alternative media, and traditional media broadcasting, have
begun to significantly influence disease transmission (Fishbein,
Middlestadt, & Hitchcock, 1994). However, current research on the
effects of disease information are primarily limited to the infected in-
formation (i.e., disease prevalence) (Grassly & Fraser, 2008; Hadeler &
Castillo-Chávez, 1995; Van den Driessche & Watmough, 2002). In 2009,
Chen (2009) found that self-protection qualities in a disease can posi-
tively influence disease transmission. Agents frequently choose to use
protective measures in an epidemic to reduce infection risks; these
behaviors are known as switching behaviors. When agents choose not to
take any protective measures in an epidemic, their behavior is referred
to as normal behavior. In order to most accurately describe an in-
dividual's perception of information related to an ongoing epidemic,
this research refers to a measure as perceived disease information (PDI),
as defined in Eq. (2.1), which can be divided into infected information
(denoted as Ii(t)) and switch behavior information (denoted as swi(t)):

= + − ⩽ ⩽PDI t αI t α sw t( ) ( ) (1 ) ( ), where 0 α 1i i i (2.1)

Fig. 2.1. Schematics of a two contact networks: ITCN and DTCN.

K. Bi et al. Computers & Industrial Engineering 129 (2019) 563–577

564



In Eq. (2.1), PDI t( )i represents new disease information of agent i at
time t ; I t( )i denotes the estimation of infected population percentages of
agent ′i s contact network at time t, which represents the infected in-
formation; sw t( )i is the estimation of switch behavior population per-
centages of agent ′i s contact network at time t , which represents be-
havior-switched information; weighted parameter α denotes how an
individual agent weights the proportion of infected information.

Since ITCN and DTCN can be utilized to collect information, I t( )i
and sw t( )i can be divided based on the information source. I t( )i

ITCN and
I t( )i

DTCN represent infected information collected by ITCN and DTCN,
sw t( )i

ITCN and represent behavior-switch information collected by ITCN
and DTCN, and β is the weight parameter to determine the proportion
of information sources. Thus, I t( )i and sw t( )i can be described as

= + −I t βI t β I t( ) ( ) (1 ) ( )i i
ITCN

i
DTCN (2.2)

= + −sw t βsw t β sw t( ) ( ) (1 ) ( )i i
ITCN

i
DTCN (2.3)

Then,

= + − + −

+ − −

PDI t αβI t α β I t α βsw t

α β sw t

( ) ( ) (1 ) ( ) (1 ) ( )

(1 )(1 ) ( )
i i

ITCN
i
DTCN

i
ITCN

i
DTCN (2.4)

Since Ii
ITCN , I t( )i

DTCN , sw t( )i
ITCN , and are four percentages; also we

have + − + − + − − =αβ α β α β α β(1 ) (1 ) (1 )(1 ) 1, the range of perceived
disease information PDI t( )i is [0, 1]. The high PDI t( )i indicates in-
creased seriousness of the disease.

2.2. Information forgetting in a disease epidemic

Human memory is a system that can store and retrieve information
(Baddeley, 1997). In 1913, Ebbinghaus (1913) introduced the forget-
ting curve to describe the information process of forgetting over time.
In 1991, Wixted and Ebbesen (1991) presented mathematical functions
to represent the process of forgetting, including experiments to de-
monstrate and analyze the forgetting curve based on those forgetting
functions. The authors considered recall, recognition, and saving as
measures of memory. The article also studied several materials to be
remembered, including present words, faces, nonsense syllables, and
graphic images. In addition, serval different subjects were used in the
experiments, and the experiments were carried out at various time in-
tervals. The study found that the process of forgetting can be re-
presented mathematically using the following simple power function of
time:

= −y at b (2.5)

In Eq. (2.5), y is a memory performance measure for the strength of
the memory trace, or the proportion recalled by memory, and t re-
presents time (one day as a unit period) (Anderson & Tweney, 1997).
Parameter a is the degree of learning, which represents the estimated
level of performance after one unit of time, and parameter b is the rate
of forgetting, where a and b range from 0 to 1 (Wixted & Ebbesen,
1997). Therefore, this power function, y, ranges from 0 to infinity; that
is, as t tends to zero, y tends to infinity, and as t tends to infinity, y
tends to zero. Fig. 2.2(a) and (b) show the trend of function y when the
degree of learning (0≤ a≤ 1) and rate of forgetting (0≤ b≤ 1) differ.

Disease parameters such as infectious periods, numbers of infec-
tions, and disease susceptibility are considered disease knowledge or
information (Becker, 1989) and can be remembered or recalled by an
individual agent. This paper assumes that, similar to normal daily in-
formation, disease information acquired via disease parameters in-
corporates the learning and forgetting phenomenon. When agents re-
ceive similar information that they received before, corresponding
memory is reinforced, causing slow memory fading. However, when
signal of prevalence aggravation has not stimulated human memory,
memory about the information follows the forgetting curve.

∫

∫
=

+ −

−
w

at dt

at dt
t

t
t b

t b

1

0
f

(2.6)

∫

∫
= =

−

−

− +
w

at dt

at dt t
1

1

b

t b
f
b0

0
1

0
1f

(2.7)

Eq. (2.6) defines memory residual weight of disease information. In
the equation, wt represents the memory performance proportion for
integration of yt in one day at total memory performance on t days
before current day, where the integration of −at b from 0 to tf represents
the sum of memory portions; integration of −at b from t to +t 1 re-
presents the memory performance proportion in the −t th day. Eq. (2.7)
shows formulation of the special case (performance proportion of
memory in the day before current day) w0, meaning feasible longest
memory epoch tf and forgetting rate b. Therefore, the mathematical
equation of final disease information (FDI) in the IFC model can be
described as

= + − + ⋯+FDI t w PDI t w PDI t w PDI( ) ( ) ( 1)i i i t i0 1 (2.8)

where FDI t( )i represents FDI of agent i at time t . Since I(t) and sw(t) are
percentages from 0 to 1, PDI t( )i has the range [0, 1]. In addition,
∑ =

=
w 1j

t
j0 , meaning the range of FDI t( )i is also [0, 1]. For agent i,

FDI t( )i reflects disease severity cognition at time t :

= + − −FDI t w PDI t w FDI t( ) ( ) (1 ) ( 1)i i i0 0 (2.9)

FDI also could be exponential smoothing, as shown in Eq. (2.9).
Specifically, w PDI t( )i0 could be new information learning, and

− −w FDI t(1 ) ( 1)i0 could be past information forgetting. w0 is a crucial
adjective parameter in the IFC model. In the case of w0= 1, the agent is
assumed to be memoryless, so FDI is equal to PDI and the agent chooses
behavior based only on current information.

2.3. Fear factor and human behavior in disease

Epidemic information is often disseminated in correlation with the
spread of disease. In addition to acquiring disease information through
social networks, newspaper, or TV news, agents also gain disease in-
formation via communication with colleagues and families in their
contact networks. This method of attaining disease-related information
often includes an emotional response that influences agents’ immediate
behavior changes. For example, if agents know many individuals have
become infected or expired at the outbreak of an infectious disease,
they may fear the disease and take protective measures, such as de-
creasing travel, wearing masks, or becoming vaccinated, to prevent
infection. The process of transforming information to emotion and then
to action is illustrated in Fig. 2.3.

Chen et al. (2017) proposed a model to describe how disease in-
formation can affect individuals’ emotions by introducing an individual
fear factor (IFF t( )i ). Where t represents the current time, i represents
the sequence number of the agent. Their model showed that individuals
demonstrate diverse disease perceptions when they know infected in-
dividuals or switch individuals, thereby altering their emotions. For
example, an increasing number of infected individuals in a neighbor-
hood and increasingly negative media about the disease enhance, an
individual’s concern about the disease, consequently increasing the
individual’s fear factor. If fewer individuals become infected in neigh-
boring areas, an individual tends to feel safer rather than fearful, re-
sulting in a minimal individual fear factor. This paper assumes that
disease information and an individual's emotions have significant cor-
relation, as shown in Eq. (2.10). When the number of final disease in-
formation FDI t( )i is large (more close to 1), an agent has strong fear
emotion about the disease; when the number of FDI t( )i is small (more
close to 0), an agent has weak fear emotion about the disease.

∝FDI t IFF( )i i (2.10)
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Steimer (2002) stated that emotions such as fear can result in de-
fensive behaviors. That is, when agents feel fear, they tend to demon-
strate self-protective behavior. Chen et al. (2017) described the re-
lationship between emotion and human behavior using a logistic
function. An individual with a large fear factor tends to choose switch
behavior with large probability, and an individual with a small fear
factor tends to choose switch behavior with a small probability. Because
emotion and switch behavior have a positive correlation, this paper
assumes that when FDI t( )i of agent i at time t is large (closer to 1 than
0), agent i possesses a strong fear emotion and he/she will likely choose
switch behavior. However, when FDI t( )i of agent i at time t is low
(closer to 0 than 1), agent i has a weak fear emotion, so agent i will
likely choose to do nothing (i.e., normal behavior).

3. Memory reception, fading, and cumulating model

3.1. Memory reception and fading

Based on the study by Shiffrin and Atkinson (1969), the memory
fading process occurs at the same time as the information reception
process. The main objective of this section is to establish the memory
fading model for received disease information. Similar to Eq. (2.4),
gained information γ t( )i of agent i over time period t can be divided into
infected information and surrounding switching behavior information
collected on the ITCN and DTCN, γ t( )i represents all information
transmitted from the information sources to an agent. However, the
collected information varies with time, so γ t( )i is defined as changes in
disease information of agent i from time −t 1 to t . For example, I tΔ ( )i

ITCN

is equal to − −I t I t( ) ( 1)i
ITCN

i
ITCN , which represents the change of infected

information in ITCN from time t− 1 to time t.

= + − + −

+ − −

γ t αβ I t α β I t α β sw t

α β sw t

( ) Δ ( ) (1 )Δ ( ) (1 ) Δ ( )

(1 )(1 )Δ ( )
i i

ITCN
i
DTCN

i
ITCN

i
DTCN (3.1)

′ = +γ t γ t( ) ( ( ) 1)/2i i (3.2)

In real-world scenarios, individuals constantly perceive new

information, and they tend to respond to and receive new cognition that
occur infrequently (Reeves & Nass, 1996). During a disease epidemic,
agents tend to receive strong stimulations of fresh information about
the disease, thereby creating distinct contrasts in their memories. For
example, when an agent receives new that breast cancer can be con-
tagious (even it is not true), the perception regarding this new in-
formation is strong, so the agent will diligently consider and remember
this information. In addition, models presented in this paper in-
corporate a discount factor between received disease information γ t( )i
and an individual’s perception of disease information, defined as
PDI t( )i , since people typically overlook minor trifles and overemphasize
crucial issues in their minds. Therefore, this research used the Hill
equation as the discount between γ t( )i and PDI t( )i . Since free ligand
concentration must be positive, a transformation was applied in Eq.
(3.2) to maintain positive received disease information γ t( )i .

The Hill equation (as shown in Fig. 3.1), widely used in biochem-
istry and pharmacology, describes the fraction variation of a macro-
molecule in the molecular binding process (Coval, 1970). Zhao et al.
(2018) first introduced the Hill equation to describe memory perception
rate in the disease transmission process. In their assumption, the com-
bination of new disease information and memory of past information is
similar to the macromolecule binding process. The reasonable
boundary of the Hill equation is between 0 and 1, this number from the
hill equation represents the rate of information learning. The memory
fading process is shown in Eq. (3.4), where ε is the forgetting rate,
meaning that an individual could lose his/her memory of the disease
over time. Disease information processing of agent i μ t( )i represents
adjusted disease information after memory fading. c is an adjustive
constant ( =c 0.5) with a range of − ⩽ ⩽H γ t n0.5 ( ( ), ) 0.5i since μ t( )i is
the parameter to represent new information about an epidemic and can
be positive or negative, indicating whether the disease prevalence could
be aggravated or mitigated, respectively.

=
+

−H γ t n
γ t

K γ t
c( ( ), )

( ( ))
( ) ( ( ))i

i
n

n
i

n (3.3)

= −μ t H γ t n ε( ) ( ( ), )i i (3.4)

Fig. 2.2. Forgetting curves.

Disease 
Information Affect Emotion Human BehaviorAffect

Fig. 2.3. Process of disease information affects
human behavior.

K. Bi et al. Computers & Industrial Engineering 129 (2019) 563–577

566



H γ t n( ( ), )i in Eqs. (3.3) and (3.4) represents newly gained disease in-
formation via a revised Hill equation; μ t( )i is the disease information
processing of agent i, which is a process variable between newly gained
information γ t( )i and perceived disease information PDI t( )i . K is the
equilibrium constant and n > 1 is the Hill coefficient assumed to have
a positive cooperative influence (binding) property in this application.

3.2. Information cumulation

Because disease-related information may vary throughout an epi-
demic, an individual’s perceived disease information, PDI t( )i also
changes during the epidemic. As mentioned, an individual's perception
of disease information contains both learning and forgetting processes;
that is, the perception process is affected by an agent’s previous
memory and newly acquired disease information. Wakefield, Loken,
and Hornik (2010) found that information reporting by mass media
leads to the behavior change because media can disseminate informa-
tion to many agents, subsequently influencing social networks and
agents’ decisions (Alvarez-Zuzek, La Rocca, Iglesias, & Braunstein,
2017; Pires & Crokidakis, 2017). In addition, agents typically pay
minimal attention to switch-protective behaviors in an epidemic when
people have access to media coverage of the disease (Bagnoli, Lio, &
Sguanci, 2007). Zhao et al. (2018) proposed that memory accumulation
and fading for disease information can be found using a stochastic
differential equation of Itô drift-diffusion process, including a drifting
factor and random walk, to predict when an individual switches to a
protective behavior. This research identifies perceived disease in-
formation PDI t( )i as disease prevalence information remembered by
agent i at time t . As described in Section 3.1, the processing disease
information μ t( )i represents the difference between gained information
and perceived disease information. The larger the difference of the
current disease information, the larger the value of the processing
disease information μ t( )i , meaning that μ t( )i is the change magnitude of
disease information used to represent a drifting factor in the Itô drift-
diffusion process. An uncertain factor, also present during an epidemic
due to population diversity and uncertainties, can be modeled as a
random walk in the Itô drift-diffusion process. Similarly, in this paper,
we assumed that the stochastic process of perceived disease information
PDI t( )i in the MRFC model is an Itô drift-diffusion process as

= +dPDI t μ t dt σdZ( ) ( )i i t (3.5)

where = ∈ ∞Z Z t{ : [0, )}t is standard Brownian motion with a mean of
0 and standard deviation of 1. μ t( )i is a drafting factor that represents
the processing disease information, and σ t( ) represents the variance of
randomness in the population. The initial value PDI (0)i is calculated
based on the definition in Eq. (2.4); the definition of PDI t( )i is shown in
Eq. (3.6).

∫= − + +
−

PDI t PDI t μ t dt σdZ( ) ( 1) ( ( ) )i i t

t
i t1 (3.6)

Because an individual’s memory and disease information vary over
time, PDI can change due to memory fading of prior information and
continuous new information updates. Therefore, final disease in-
formation FDI t( )i is not only the sum of all new information acquired by
an individual i at time t, but it is also affected by faded memory of prior
information. Considering the exponential smoothing memory fading
method in Eq. (2.9), final disease information FDI t( )i in the MRFC
model can be defined as

= + − −FDI t w PDI t w FDI t( ) ( ) (1 ) ( 1)i i i0 0 (3.7)

The entire process of disease information is shown in Fig. 3.2.

4. Agent-based modeling

4.1. Agent-based modeling

This section discusses agent-based modeling simulation of epidemic
transmission to determine if IFC and MRFC models are effective in the
real world. Because individuals have unique memories, moods, and
behaviors, the unit of simulation must be individual, hence the use of
the agent-based model. Agents are typically categorized into four types:
switch susceptible, normal susceptible, infected, and recovery. An in-
fected agent can contaminate a nearby switch/normal susceptible agent
with a varying infection rate based on the switching behavior of sus-
ceptible agents. Switch susceptible agents have lower infection rates
than normal susceptible agents because they choose behaviors to pro-
tect themselves from disease. An infected agent has a probability of
recovering after reaching the recovery period, and an infected agent
becomes a recovery agent after completing the recovery process (as
shown in Fig. 4.1).

The agent-based epidemic model in this research references the
basic susceptible, Infectious and Recovered (SIR) model framework
built by Kermack and McKendrick (1927). Kermack-McKendrick theory
assumes no births, deaths, or travel into or out of the population and
that every agent has an equal chance of contacting with any other
agent. In terms of an epidemic virus, the model assumes no dormant
and latent periods in the disease. Viral mutation is not considered.

The agent-based simulation model primarily defines information
reception, memory fading, and behavior switching through the IFC and
MRFC models. Upon model initialization all agents are randomly ar-
ranged spatially in two dimensional (2-D) simulation space. When the
simulation begins agents randomly move to nearby areas or remain at
their current location. Disease information is calculated based on the

Fig. 3.1. Hill equation.

Fig. 3.2. Flowchart of disease information in the MRFC model.
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prevalence and switch-behavior information at each time epoch fol-
lowing agent movement, and then susceptible agents reconsider whe-
ther or not to choose switching behavior based on the updated PDI(t)
calculated by the IFC or MRFC models. Infected agents can infect
nearby susceptible individuals at a certain infection rate. The simula-
tion terminates when all infected agents reach recovery, signaling the
end of the epidemic. Otherwise simulation continues until the given
maximum simulation time.

Agent-based models have gradually become mainstream due to
rapid advancements in hardware and software computing power.
Several agent-based simulation and modeling environments, such as
Swarm, Mason, and NetLogo, were developed to help researchers study
detail behaviors of their models. Netlogo is the most researcher-re-
commended software because of the friendly programming interface
and ease to code (Wilensky, 1999). Netlogo software also includes a
library with a large amount of example models. Based on these ad-
vantages, this research utilized Netlogo as the simulation platform.

The simulation framework in this paper is based on the epiDEM
framework (Yang & Wilensky, 2011), an existing example model in the
Netlogo library. The simulation is innovative because it defines switch-
susceptible agents, which were not considered in the original Netlogo
library Moreover, the IFC and MRFC models are embedded into the
model to determine if susceptible agents will switch to a protective
behavior. This model also highlights susceptible population average
fear factors that can be used to describe psychological emotion varia-
tions during epidemics.

Simulation results reported total switch populations and accumu-
lated infections results. The initial testing simulation model was set in a
51×51 2-D grid. Each agent could randomly move to the grid nearby
or stay at the current position, and each susceptible agent could be
infected if and only if exist infections existed in his/her surrounding
grids, referred to as the DTCN. In addition, the agents were assumed to

receive disease information (infection rate and switch rate) from the
entire simulation map, referred to as the ITCN. The recovery time for
each agent followed a normal distribution (assume =μ 30, =σ 7.5)
(Spencer & Jones, 2003), and following the recovery time, each infected
individual became a recovered individual and was not infected nor
reinfected. This simulation also assumed that the infected rates for
normal and switched-susceptible agents are 15% and 5% to clearly
embody effects of the protective measures.

The simulation contained an initial population of 1000 agents ran-
domly placed on the simulation map. Among those agents, 5% was
randomly selected to be infected individuals based on the binomial
distribution and 10% was randomly selected to be the switched popu-
lation based on binomial distribution. No overlapping occurred be-
tween switched and infected agents. The white agent in the graphical
user interface (GUI) represented non-switched susceptible agents,
purple agents represented switched susceptible agents, red agents (also
orange and pink agents in simulation of Section 5) represented infec-
tions, and green agents represented recovered agents.

Simulations were run on a workstation equipped with an Intel-based
central processing unit i7-6700 K and 32 GB memory (RAM). System
parameters such as infection rates or specific model parameters could
be set manually prior to the simulation runs. The primary objective of
the simulation was to monitor the trends or changes of crucial system
variables (e.g., switched population, infected population, average fear
factor) (see Fig. 4.2.).

4.2. Sensitivity analysis

Although Sections 2 and 3 of this paper detail IFC and MRFC models
and Section 4 presents Netlogo models and simulation setups to study
model behaviors, the significant influences of parameters such as in-
fected information weight α, were not yet discussed. This section

Fig. 4.1. Flowchart of disease transmission.

Fig. 4.2. Netlogo model and simulation GUI.
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utilizes the OFAT method to analyze the sensitivity by changing the
setting of each parameter in the IFC and MRFC models. The main goal is
to analysis model behaviors caused by altered parameter settings. In
addition, parameter ranges also reflect the limit application range of
crucial variables. The application range can be used to determine model
flexibility.

Three fixed random seed values were used in each simulation to
eliminate effects from the random process and ensure the presence of
only one variable in each sensitive analysis simulation. Figs. 4.3 and 4.4
show the average number of three example simulation results (with
common random seeds). The common random seeds setting ensures the

analyzed parameter is the only variable.
The IFC model contains three crucial parameters: infected in-

formation weight α, behavior switch information weight β (Eq. (2.4)),
and memory performance proportion wt (Eq. (2.5)), which is de-
termined by the rate of forgetting b and longest memory epoch tf (Eq.
(2.10)). Therefore, this section considers parameters α, β, b, and tf (set
as variables of information reception and forgetting process in the
Netlogo simulation environment) by changing the value of parameters
in their corresponding reasonable range and then analyzing the varying
tendencies of infected rate and a total population of switch.

Sensitivity analysis results of the IFC model are shown in Fig. 4.3.

Fig. 4.3. IFC model sensitivity analysis.

Fig. 4.4. MRFC model sensitivity analysis.
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The red and blue lines illustrate variations of cumulated infections and
total switch population, respectively, corresponding to parameter set-
ting variations. As shown, cumulated infections decreased and switch
population increased with the growth of α β, , and b. In addition, the
variation range resulting from changing β was more pronounced than
the variation ranged when α was changed, proving that β is more
sensitive to total switch population than α. For the longest memory
epoch tf , however, the tf cause the lower total switched population and
higher infections. In general, α β t, ,and f are sensitive, but b is not sen-
sitive.

The MRFC model contains six parameters: infected information
weight α, behavior switch information weight β (Eq. (2.4)), the power
of Hill equation n, equilibrium constant K (Eq. (3.2)), forgetting process
constant ε, and maximum random range σ (Eq. (3.4)). In addition to α
and β, n and σ are also advantageous for sensitivity analysis because n
determines the information reception level and σ determines the ran-
domness level. However, K and ε identify the learning and forgetting
process, which means K and ε should be fixed at the simulation in-
itiation.

MRFC model sensitivity analysis results for the total infected po-
pulation and the total switched population are shown in Fig. 4.4. Si-
milar to the IFC model, cumulated infections tended to decrease and
switch population increased with the growth of α and β. However, the
MRFC model was more sensitive to α than β, contrary to results from
the IFC model. For the parameter n, cumulated infections and switch
population were very sensitive when ∈n [3,7]. For the variation para-
meter (σ), the cumulated infections and switch populations became
more random as σ increased, resulting in a population diversity para-
meter σ below 0.6, which was not a significant parameter for system
sensitivity.

In order to determine whether the IFC or MRFC model is more
sensitive to parameter changes, this study compared sensitivity analysis
results of the models shown in Figs. 4.3 and 4.4. Comparison showed
that increasing α and β resulted in a decrease of total infections and
total switching populations in both models. In addition, parameter α
demonstrated greater sensitivity than β in the models. Table 4.1 pre-
sents the covering range of total infected and total switched populations
when common parameters α and β were changed in both models.
Sensitivity levels of the MRFC model were generally higher than the IFC
model, the only exception is the total switch population changing by β.
The infected population in the MRFC model varied from 11.3% to
90.6% (95% confidence interval [6.5%, 93.9%]), and the switched
population ranged from 2.4 to 60.3 thousands (95% confidence interval
[1.2, 79.7] thousands). Infected population variation was much smaller
for the IFC model, ranging between 11.1% and 52.2% (95% confidence
interval [8.2%, 67.7%]). Similarly, the switched population varied only
between 26.9 and 56.8 thousands (95% confidence interval [16.2, 68.3]
thousands). The MRFC model demonstrated less robust to the para-
meter changes than the IFC model when modeling general epidemics
because the model is more sensitive to parameter settings. Therefore,
the MRFC model could be used to model epidemics with high variations
of infected and switched population ranges.

The second part of sensitivity analysis focuses on infection track
variations when crucial parameters are changed. Using OFAT sensi-
tivity analysis, the number of infections was inversely correlated to the
number of switch populations, eliminating the need to track

percentages of both the infected population and the switched popula-
tion. Therefore, this portion of analysis focused on the percentage of
infection population, which more accurately reflects the severity level
of epidemics. Simulation comparison is shown in Fig. 4.5. For the IFC
model, all shapes of tracks with different parameter settings were si-
milar. The total infected population throughout the epidemic decreased
when α and β increased, thereby corresponding to OFAT sensitivity
analysis results. In comparison, the tracks of infection population per-
centage with various parameter settings demonstrated multiple shapes
in the MRFC model. Parameter α was the key to controlling the mid-
term (approximately Day 25) epidemic performance of the model.
Therefore, if agents focus more on infection information rather than
switch behavior information (with higher α), total infections will de-
crease. However, parameter β significantly determines epidemic per-
formance of late periods (approximately Days 25–50), meaning that
increased attention to local disease information rather than global in-
formation will decrease total infections in the second half of the si-
mulation. The second part of the sensitivity analysis proved that the
MRFC model has greater flexibility than the IFC model in the range of
infections and switched populations and in the shape variations in in-
fection population percentage tracks.

4.3. Simulation comparisons

This section describes simulation runs to compare IFC and MRFC
model performances, including use of a no memory model as the
baseline in each comparison. Populations of each type of agent and
percentages of switched population were considered for each simula-
tion run. Common random seed and other parameters ( = =α β 0.5)
were used to ensure that variations occurred due to different modeling
methods only. Simulation run times were set to 70 days, although in
most cases in our simulations, the epidemic ended prior to that limit.
All populations, percentages of infected/switched populations, and
average fear factors were compared, as illustrated in Fig. 4.6. Popula-
tions contain the number of infected, susceptible, switched, and re-
covery agents, and infected/switched rates are defined as the infec-
tions/switch-susceptible populations divided by the total non-cured
population. The average fear factor represents the average number of
fear factors for the entire susceptible population.

As shown in Fig. 4.6, infected individuals in the IFC model totaled
914, 847 in the MRFC model, and 902 in the no-memory model. The
total switched population in the IFC model was 3299, 3978 for the
MRFC model, and 4642 for the no-memory model. In general, the IFC
and MRFC models demonstrated similar performances, although the
MRFC model showed relatively more switched-susceptible agents in the
mid stage of the epidemic (10–20 days). Because in the MRFC model,
the process to gain information can immediately detect epidemic var-
iation information. Therefore, the MRFC model can be applied to highly
lethal or infectious epidemics, such as the SARS epidemic in 2003.
Agents typically pay close attention to new epidemic developments,
thereby causing rapid, elevated fear emotions in the population and
motivating a majority of individuals to take protective measures even if
only a minimal number of infections has been reported.

Both the IFC model and the no-memory model showed relatively
lower switched behavior than the MRFC model, making them better-
suited to model epidemics with higher numbers of infectious and

Table 4.1
Comparison of model flexibilities based on sensitivity analysis data.

Range of infections by changing
α

Range of infections by changing
β

Total switch population range by
changing α

Total switch population range by
changing β

IFC model 11.1–52.2% 21.8–41.4% 26.9–56.8 thousands 31.9–44.2 thousands
95% confidence interval 8.2–67.7% 4.2–63.4% 16.2–68.3 thousands 20.2–53.4 thousands
MRFC model 11.3–90.6% 12.2–16.8% 2.4–60.3 thousands 29.9–50.5 thousands
95% confidence interval 6.5–93.9% 9.4–20.8% 1.2–79.7 thousands 17.1–61.6 thousands
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Fig. 4.5. Sensitivity analysis of infection population percentage tracks for IFC and MRFC models.
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Fig. 4.6. Comparison of IFC, MRFC, and no-memory models.
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minimal lethal situations, such as an influenza epidemic, in which
people frequently pay less attention to new disease developments be-
cause the risk of death or other adverse consequences are relatively low.
Although overall performances of the IFC model and no-memory model
were similar, the tendencies of infected population percentages differed
significantly. The switched population in the IFC model followed the
decline of the infected population approximately 30 days after the onset
of the epidemic. However, in the no-memory model, the infected po-
pulation demonstrated a second peak around 40 days due to the quick
decline of the switched population. Because agents in the IFC model
retain memory of past epidemic information, they maintained their
switching behavior for an extended period even as the epidemic neared
completion. Nevertheless, the susceptible population in the no-memory
model does not retain past disease information, so a majority of in-
dividuals switched behavior back to normal immediately, allowing the
epidemic to spread.

5. H1N1 case study

5.1. H1N1 pandemic in 2009

H1N1, also known as swine flu (Peiris, Poon, & Guan, 2009), is a
form of influenza in pigs that can be transmitted to people by exposure
to infected droplets. H1N1 is an orthomyxovirus, a subtype of influenza
A that is the most common cause of seasonal human flu. H1N1 viruses
attack the human immune system, attaching and replicating within
infected cells. A person infected by the H1N1 virus will develop a
progressive lower respiratory tract disease that could result in re-
spiratory failure (Rello et al., 2009). The first human case of H1N1 virus
was reported in Mexico in 2009, quickly spreading to the United States
and the world and resulting in a pandemic outbreak (Archer et al.,
2009). Determination of H1N1 infection is difficult based on symptoms
because influenza symptoms are nonspecific, typically lasting four to six
days with an effective infection period continuing for approximately
seven days (Centers for Disease Control, 2009).

Prior to the outbreak of the H1N1 virus pandemic in 2009, minimal
information was available about the disease and people had limited or
no disease awareness or past memory. Immediately following the initial
disease outbreak, people began to understand and focus on the new
strain of influenza A. Therefore, in order to more accurately describe
how people learned about and forgot H1N1 virus pandemic informa-
tion, this research utilized data from the pandemic from several days (5
days) after the outbreak since people began to have memories about the
disease after that time.

Many reports documented the H1N1 virus pandemic in 2009
(Plennevaux, Sheldon, Blatter, Reeves-Hoché, & Denis, 2010). The first
graph in Fig. 5.1 illustrates pandemic H1N1 virus infection among New
York City residents hospitalized from May 29 to July 1, 2009. At the
preliminary stage of the pandemic, people had minimal memories of
the disease and paid limited attention to it, resulting in an increase in
infection cases. After several days of infection, people developed in-
creased awareness and memory about the disease and began to take
preventive measures; at the end of June 2009 the number of infected
cases gradually declined. Pandemic prevalence showed a similar trend
in Chicago from June 7 to July 10, 2009, and in Shanghai, China, from
June 29 to July 29, 2009, the number of infection cases initially in-
creased and then decreased during July. Mexico City showed a similar
trend from April 17 to May 17, 2009. This research used the graphs in
Fig. 5.1 to determine whether the learning and forgetting phenomenon
affected the pandemic trend in the four cities.

Table 5.1 shows the proportional distribution of infection cases
based on age group and total population in four cities. From May 1 to
June 30, 2009, the highest infection rate occurred in students
5–19 years old and adults 20–64 years old. The infection rate for stu-
dents was approximately three times higher than the infection rate for
infants under 4 years old, with the exception of Mexico City. The

numbers of infected cases in urban areas were significantly higher than
non-urban areas.

In order to determine if receiving and forgetting information during
an epidemic can influence the spread of disease, this paper assumes that
people can both learn new information and forget prior information
over time. The IFC and MRFC models were applied to simulate an
outbreak of the H1N1 virus pandemic in 2009 for the Chicago using
report data to determine if the IFC model or MRFC model can better
reproduce infection population trends throughout the pandemic.

5.2. Infection rate calculation with historical epidemic data

Infection rate is the probability of a susceptible agent to be infected
at time t. It can be defined mathematically as the new infected popu-
lation divided by the susceptible population (Utah Department of
Health, 2017):

= ∗
new infections t

susceptible agents in risky t
KInfection rate

( )
( ) (5.1)

In Eq. (5.1), new infections(t) represents infections caused by the
original infection after last time epoch, and K is a constant used to
adjust the infection rate within different time periods. For example, if
the infection rate is calculated based on a one-day period, the infection
rate in 10 days can be determined by assigning a value of 10 to K .
Susceptible agents in risky(t) have face-to-face contact with the infected
population in their DTCN. Even if the data of the original infected po-
pulation are known, however, accurate recording of the number of
potential contacts for each infected agent is nearly impossible.

This section uses three methods to estimate the average number of
contacts for an infected individual. The first method, the average-con-
tact-based method, utilizes the estimated average number of contacts
from the report. Mossong and et al. (2008) recorded physical contact
behavior for 7290 participants from eight countries with various age
ranges. The average number of contacts for these participants was 13.4
per day (standard deviation was 10.6).

The second method, the age-ranges-based method, is based on the
average number of contacts from various age ranges. Valle, Sara, et al.
(2007) utilized U.S. Census Bureau data from 2000 to analyze contacts
per person. They found that the adult group (between 20 and 60 years
old) had the highest number of contacts (approximately 20) per day.
Children and elderly groups had the lowest number of contacts (ap-
proximately 10). Therefore, the susceptible population was defined as
∑ I t c( )i i i, where i is the corresponding age group I, I t( )i represents how
many infected individuals are present in age group i in time t, and ci
represents the average number of contacts in age group i.

The third method, the urban-population-percentage-based method,
considers the average number of contacts in areas with various popu-
lation densities. Read and et al. (2014) researched the relationship
between daily contacts and population densities. They found that urban
citizens have a higher number of contacts than rural citizens. This
method most accurately reflects the epidemic performance difference
between rural and urban populations.

Infection rates were calculated at each time epoch in each city using
these three methods. Table 5.2 presents the average numbers with 95%
confidence intervals of the infection rates. Among the four cities,
Shanghai had the highest infection rate and Chicago had the lowest
infection rate, a difference that could be attributed to the areas’ dif-
ferent population densities and epidemic outbreak locations. However,
the infection rate of H1N1 in 2009 remained approximately 1–2%. This
study used the average-contact-based method to calculate the infection
rate in the case simulation.

This research also investigated whether behavior switching reduces
the chances for infection. Unfortunately, no data reported how many
agents protected themselves from H1N1 infection using switch behavior
such as protective masks, vaccinations, or staying at home. To most
accurately determine the H1N1 infection rate for behavior switched
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population, therefore, this research used existing reference data
showing switch behavior effectiveness to be 50–86% (Bridges, 2000;
Hurwitz, 2000; Osterholm, 2012). This case study used the median of
the range as the effectiveness of the switched behavior, meaning the
infection rate of behavior-switched agents was approximately 33% of
the normal infection rate.

5.3. Simulation of 2009 Chicago H1N1 case

As mentioned, Chicago was one of the cities which severely afflicted
by H1N1 in the 2009 virus pandemic. This mega city has an approx-
imate population of 2.705 million people (third largest in the United
States) and a population density of 4582.3 people per km2 (fourth
larges in the United States) (Gibson, 1998). Chicago has 588.26 km2 of
the land area, which has a strip-shaped, but the northeast portion of
Chicago has the highest population density. The fast-paced urban life-
style and highly concentrated population in this area contributed to the
extensive H1N1 outbreak. This section uses Chicago as a special H1N1
case to conduct epidemic simulation using historical data and analyzing
the fear emotion with learning/forgetting behavior.

The Chicago H1N1 virus epidemic simulation was set in a 60 ∗ 120
grid 2-D space with each grid representing 0.2858 ∗ 0.2858= 0.0817

km2. A total of 2705 agents were located in the simulation space, and
each agent represented a group of 1000 individuals. Since June 7, 2009,
there were 25 H1N1 reported infections, or the initial infected agents
(red) were 1% of the total agent groups; each infected group had one
infected person. Initial switched-behavior agents were assumed to
comprise approximately 3% of the total population. All infected, swit-
ched, and susceptible agents were randomly placed according to po-
pulation densities in Chicago, as shown in Fig. 5.2.
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Fig. 5.1. H1N1 infection data in 2009.

Table 5.1
Infection characteristic percentages by cities.

Regions Age group of infection percentage Urban/non-urban percentage

Infant aged Student aged Adult aged Elder aged Urban Rural
0–4 5–19 20–64 >64

New York 6.7% (Lee & Wong,
2010)

20% (Lee & Wong,
2010)

58.8% (Lee & Wong,
2010)

14.5% (Lee & Wong,
2010)

87.9 (Iowa State University,
2010)

12.1 (Iowa State University,
2010)

Shanghai 16% (Shen & Lu,
2010)

51% (Shen & Lu,
2010)

30% (Shen & Lu,
2010)

3% (Shen & Lu,
2010)

59 (Chan, 2007) 41 (Chan, 2007)

Chicago 3.8% (Centers for
Disease Control,
2009)

34.2% (Centers for
Disease Control, 2009)

60% (Centers for
Disease Control,
2009)

2% (Centers for
Disease Control,
2009)

89.3 (Newgeography, 2011) 10.7 (Newgeography, 2011)

Mexico City 16% (Perez-Padilla &
et al., 2009)

20% (Perez-Padilla,
2009)

56% (Perez-Padilla,
2009)

8% (Perez-Padilla,
2009)

78.8 (Ruiz-Rivera, Suárez, &
Delgado-Campos, 2016)

21.2 (Ruiz-Rivera et al.,
2016)

Table 5.2
Calculated infected rates using three methods in four cities.

Regions Average-contact-
based method

Age-ranges-based
method

Urban-population
percentage-based
method

New York 1.30%
[1.05–1.54%]

1.08%
[0.87–1.28%]

1.22% [0.99–1.45%]

Shanghai 2.39%
[1.71–3.05%]

1.88%
[1.36–2.41%]

2.22% [1.60–2.85%]

Chicago 1.08%
[0.91–1.25%]

1.01%
[0.85–1.16%]

1.16% [0.98–1.34%]

Mexico City 1.90%
[1.12–2.69%]

1.59%
[0.93–2.24%]

1.86% [1.09–2.62%]
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Simulations runs were set up with identical initial settings and
random seeds, but with two models (the IFC and MRFC models).
Simulation results related to infection source, average fear factor, and
switch groups in the two models are shown in Fig. 5.3. The simulated
time period was June 7–10, 2009 (33 days). In the IFC model simula-
tion, although the total number of infections (492) was slightly higher
than the real situation (410), the tendency of the epidemic was very
similar to the historical data. In addition, the average fear factor (not
shown in Fig. 5.3 due to space limitations) in the susceptible population
and the number of individuals in the switched-behavior group (Fig. 5.4)
were similar to the prevalence data reported in 2009. However, simu-
lation results of the MRFC model did not correlate well with the his-
torical data. The peak of the H1N1 outbreak occurred around June 25
in the MRFC simulation, when the real-world epidemic was nearly
finished, and the switched-group number was nearly half of the total
groups (Fig. 5.4) at the beginning of the prevalence, which is not rea-
listic. In conclusion, results of the IFC model simulation runs fits better
to the 2009 Chicago H1N1 historical data.

Fig. 5.4 uses GUI to show epidemic tendency in the IFC and MRFC

models. In the interface, red, orange, and pink agents represent the
infected group with 1, 2, and 3 infected people, respectively, white
agents represent normal-behavior susceptible agents, violet agents are
switch-behavior susceptible agents, and green agent groups contain
recovered people.

On Day 6 of IFC model simulation runs only a few agent groups in
the north part of the city were infected, and almost no agents switched
their behavior to prevent infection. On Day 14 the epidemic area ex-
panded into the entire downtown and northern areas of the city. With
the increasing number of newly infected individuals, more and more
agents gained awareness of the H1N1 virus epidemic from the in-
formation learning process. The number of switched-agent groups also
grew significantly due to increasing fear of the H1N1 virus. On Day 22
the infected population was primarily located at the edge of highly
populated areas, and the number of infected individuals began to de-
crease from the overall peak. Since memory fading requires several
days (usually around 5 days in our simulation), the number of switched
groups did not show significant decline. The prevalence nearly ended
on Day 30 when the number of infected agents approached zero. Very

Fig. 5.2. Comparison of population density map with simulation initial setting in Chicago.
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few agent groups (around 10 percent) decided to switch their behavior,
meaning that most agents had already forgotten that the H1N1 virus is a
highly pathogenic influenza.

Results from the MRFC model simulation showed that most of the
susceptible population decided to switch their behavior at the begin-
ning of the epidemic (around Day 6) due to fears caused by sudden
disease prevalence, thereby preventing the early epidemic diffusion. In
the metaphase of the epidemic fewer people protected themselves by
switching their behavior even though there was no strong signal of
prevalence deterioration. The result of returning to normal behavior
caused the epidemic outbreak to become more serious near the end of
the simulation. However, simulation results from the MRFC model may
not actually reflect characteristics of 2009s H1N1 virus scenario in
Chicago in regards to epidemic infection tracks and behavior patterns of
susceptible agents.

In general, the IFC model accurately recreated the complete process
of Chicago's H1N1 epidemic in 2009. The time zone and infection

tendency from this simulation resembled real historical data.
Prevalence began in the northeast portion of the city and spread
through downtown. Suburb areas were not influenced significantly
from the H1N1 virus. The average fear factor and number of switched
agents also followed the tendency of epidemics with a short delay
(2–3 days), potentially indicating the time needed to process new dis-
ease information and allow for memory fading.

6. Summary

This paper investigated the assumption that disease information can
influence an individual's fear emotion and that agents’ emotions po-
tentially affect behavior during an epidemic. This study used two
mathematical models (IFC and MRFC models) to discuss disease in-
formation fading and learning processes. Both models synthesized dis-
ease information on local and global levels with infection information
and switched-behavior information, thereby providing comprehensive
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Fig. 5.4. IFC and MRFC model topographic chart for 2009 H1N1 in Chicago.

Table 6.1
Comparison of model characteristics.

IFC Model MRFC Model

Information source ITCN (local) and DTCN (global) ITCN (local) and DTCN (global)
Information types Infection and behavior Infection and behavior
Information cumulative process Learning and forgetting Learning and forgetting
Randomness process No randomness Randomness in Itô stochastic process
Information completeness Based on complete disease information for each agent Only based on Δ information at each time epoch
Information transformation No information transformation Information transformation by hill equation
Sensitivity and model flexibility Relative normal sensitivity and flexibility Relative higher sensitivity and flexibility
Relationship between infections and switched behavior Relative higher relationship Relative normal relationship
Real data simulation performance Fit the tracks of epidemics Obviously different from historical data
Potential scope of application Highly infectious and low lethal epidemics Highly lethal epidemics
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disease information to agents. However, the performances of the two
models are different in modeling techniques, sensitivity levels and si-
mulation performances (show in Table 6.1).

Modeling technique is the primary difference between the IFC and
MRFC models. The IFC model assumes agents can obtain a complete
picture of the epidemic via information from local daily contacts or
global news coverage. This prevalence information affects the protec-
tive behavior of agents by changing their fear emotion level. However,
the MRFC model assumes agents can detect discrepancies in disease
information. The Hill equation transformation showed that agents
usually ignore minor discrepancies and pay attention to major incon-
sistencies. Cumulative information transformation to knowledge was
modeled mathematically by an Itô stochastic diffusion process.

The differences of modeling methods reduced the significant im-
parity in simulation results. The IFC model more accurately describes
epidemics with high infectious ability and low lethality. Although the
IFC model has less sensitivity and flexibility than the MRFC model, it
more precisely restored the tracks of 2009s H1N1 virus epidemic in
Chicago. Therefore, the MRFC model should be applied for highly lethal
epidemics. Moreover, the simulation results show a weak relationship
between infections and switched behavior in the MRFC model, which
results that did not correlate to current data sets.

In conclusion, a dynamic agent-based model can be used to mimic
real-world epidemic situations and explain disease transmission, be-
havior changes, and distribution of prevalence panic. Moreover, agent-
based simulation with real data restored the historical H1N1 virus in-
fluenza data from Chicago in 2009. Therefore, the future work of this
research should explore more in the areas of the potential applications
of both agent-based epidemic model and forgetting and learning model
in following areas: (1) Health Organizations and Disease Control
Centers can utilize the model presented in this research to evaluate and
experiment the possible impacts and influences using various control
strategies. For example, the agent-based epidemic model can be used to
forecast the effects of information dissemination through media and
broadcast. The model presented in this research can also reflect the
effectiveness of public health education regarding the underlining dis-
ease in the researched area. (2) Our model can also be applied to ex-
amine the self-protection ability of the general public during a spon-
taneous or unannounced epidemic. By simulation experiments aimed to
the specific area, the disease outbreaks in a localized area can be de-
tected and subsequently mitigated by the public health agencies. (3)
The forgetting and learning model presented in this research can be
applied to other areas of application to reflect the diversified opinions
or spontaneous behaviors within a heterogeneous population. For ex-
ample, the investor's diversified perspectives and investing patterns on
the stock market or the popularity or the electability of a public figure
in the commercial or political campaigns can be modeled using the
forgetting and learning curve presented in this research.”
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