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Evolutionary games have been developed in biology and mathematics, 
notably by J. Maynard Smith and his collaborators and after them by 
many other researchers, induding the Nobel prize in Economies, 
R. Selten. Evolutionary models have proven very helpful to study the 
behaviour of animals in various strategie contexts and to understand 
biological evolution. Now, these models are becoming popular among 
game theorists and the approach appears to be fruitful in the field of 
economies and business studies. One feels that the kind of adjustment 
dynamies studied by evolutionary games may be useful for discussing 
various types of economic issues where agents react slowly through 
emulation, imitation, or leaming. Of course the kind of modelling suitable 
for applications in economies must be different from that used in biology. 
Even if managers, sellers and buyers, or other economic decision makers 
sometimes have very limited rationality, they can be expected to behave 
more rationally than birds or rats. It is then the introduction of specific 
learning processes that can bridge the gap between biological games and 
economic behaviour. 

There is a particular reason why economists could now be interested in 
evolutionary models. Non-cooperative GT, as applied in economies, is 
facing two difficulties: first, in many economic problems, it is not entirely 
dear how a NE can be finally reached by the players and, second, when 
there are many equilibria, with different implications, it is important to 
understand how a particular equilibrium will eventually be selected. It 
happens that the dynamic adjustments described by evolutionary models 
may give interesting answers to both these questions. So, even though 
economic applications are still rare and some progress is still to be made 
in order to adapt the modelling, the path seems a very promising one to 
follow. 
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The present chapter will rnainly develop the framework put forward 
to study biological games. Some applications to economic problems in the 
field of industrial organisation or international trade theory will be pre­
sented. Section 7.1 introduces to the basic concepts of Evolutionary Game 
Theory (EGT): the 'Replicator Dynamics' (RD) and 'Evolutionary stable 
strategies' (ESS) in both syrnmetrical and asymmetrical evolutioIlaI} 
games. Section 7.2 presents extensions of the basic concepts and discusses 
their relevance for economics. The relationship between RD, ES5 
and other equilibrium concepts is also presented in this section. In sectia 
7.3, we present abrief introduction to leaming models, both an older 
approach in the tradition of the Cournot adjustment model, and ne'f\ 
developments which are designed to make EGT fit better traditiona! 
economic problems. Finally, section 7.4 will be devoted to a fe'f\ 
examples of applications of the concepts of evolutionary games to eco­
nomic issues. 

7.1 	 IReplicator 'Dynamics and evolutionary stable 
strategies: the basic biological concepts 

The most interesting cases for the economist involve different populati 
of players. However, in order to keep things simple at first, let us in 
duce the RD and the concept of ESS by considering the case often stuCÜi 
in biology of a population of a single species, also called a homogen 
population, playing a symmetric game. Then, we will see how th 
concepts are used when there are more than one population. 

In the single-population case, one studies the random matching 
individuals who have the same set of strategies available and W h 1 

payoffs are entirely symmetric. Here a 'strategy' means a special beha 
iour and each individual is genetically programmed for playing a part:ic! 
lar strategy. In biological games, a payoff may be interpreted as 
number of offspring. It is also called 'fitness'. 

Let us call X = {Xl, ... , Xi, • •• , Xn } the set of pure strategies available 
the players, and U(x, X') the payoff when one agent plays Xand her 
his) opponent plays x'. In this chapter we will denote explicitly by m i 

mixed strategies. 

7.1.1 	 The Replicator Dynamics 

At one point in time there may be different fractions of the total pop 
tion programmed to playa particular strategy. In order to study 
evolution of these groups, admitting that only the fittest will survive 
type of dynamic adjustment must be imagined. It is common in biolo 
games to use a kind of Malthusian dynamics, also called the 
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Aeeording to the RD, the fraetion of the population playing a partieular 
strategy will inerease if it performs better in terms of the fitness funetion 
than the population average. If a type of players gets less than the average 
payoff, then its pereentage in the population will decrease. 

There is a simple large population of agents playing the same symmet­
rie game. In order to keep the presentation as simple as possible, the 
number of pure strategies is limited to two: x and x . An extension to a 
larger nwnber of strategies is straightforward. 

Let nt and n~ be the number of agents, respectively, playing x and x' at 
time t and Nt the total population. 

Let St(x) denote the proportion of agents playing strategy x at time t: 

nt _ !!!.. (7.1) St(x) = nt + n~ - Nt 

Agents programmed for playing x have the expected payoff: 

Ut(x) = St(x)Ut(x, x) + St(x')Ut(x, x') (7.2) 

The average payoff in the population is then: 

Ut = St(x)Ut(x) + St(xl)Ut(X') (7.3) 

Starting from these assumptions, one ean define several versions of the 
RD. The most eommon version in a eontinuous time is expressed in 
the following differential equation: 

s(x) = s(x)[u(x) - u] = F(s) (7.4) 

This equation of replieation describes the evolution process of populations 
programmed for playing the diverse strategies: in this ease x and x'. It 
reflects the basic idea defining the RD: if strategy x is performing better 
than the average, the agents who play it will see their proportion increase 
in the total population. 

There are different ways to obtain (7.4). We present two ways below, 
but if the the logie of the RD is understood, the reader may prefer to go 
directly to the numerieal examples whieh follow. 

A non-overlapping generations model of the Replicator Dynamies 
(Van Damme. 1991) 


In eaeh period, agents are paired at random to playa symmetrie game. 

Their payoffs eorrespond to their offspring who replaee them in the next 

period. The number of players choosing eaeh strategy depends on the 

payoffs in the previous play of the game. 
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If nt players play x at t, then ntUt players will play X at t +1. TI 
expected number of players in period t +1 is: 

ntUt(x) + n;ut(x') = Nt+1 

It is equal to NtUt. The proportion of players choosing X in period t + 1 

ntut(x) ( ) Ut(x)
St+1 (X) = ( ') = St X -_- (7

nt + nt Ut Ut 

In this discrete time model, the evolution of the population can be r, 
sented as: 

St+1 - St = St(x) u/(x) - Ut 

Ut 


Considering very short time periods a110ws us to write (7.6) as: 

s= s(x) u(x) - U 

U 


Finally, a rescaling of time leads to the fo11owing equation: 

5 = s(x)[u(x) - ul 

which has the same solution trajectories as (7.7) and which is (7.4). 

An overlapplng generations model' of the Replicator Dynamics 
(Binmore. 1992; Samuelson. 1997) 

In the previous model, a11 agents were reproducing themselves a· 
same time and none of them could survive after reproduction. 
assumption may apply to some kinds of animal species, but cert 
not a11. Moreover, it does not fit weil the applications to eco"""-­
where we would like to have agents leaming over time. 

Now we assume that in each period of time of length L, a fractil 
the population reproduces itself. Payoffs of the game are again 
representing offspring and each agent playing strategy X will give 
Ut(x) offspring at time t. 

In period t + L, the number of agents playing strategy x is given 

nt+t = nt + Ln/Ut(x) 

The total number of agents next period is: 

Nt+t = nt(l + LU t(x) ) + n;(1 + LUt(x')) 
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,e Replicator Dynamies 
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The proportion of agents playing x next period is: 

nt+T _ . nt(l + .Ut(x) ) 
( ) 

_ 
St+T x --- " 

Nt+T nt(l + .Ut(x) ) + nt(l + .Ut(x ) ) 

or: 

St(x)(l + .Ut(x) ) 

St+t(X) = st(x)(l + .Ut(x) ) + st(x')(l + .Ut(x') ) 


Then, the evolution of the population can be represented as: 

St+t(X) - St(x) = St(x) .Ut(x) - .Ut (7.9) 
1 +.Ut 

Taking the limit. --+ 0 in (7.9) gives: 

s= s(x)(u(x) - ü) 

which is again (7.4). 

Example 1 

Consider the game of coordination described by the payoff matrix in 
Figure 7.1. 

The players have two alternative strategies, Xl and X2. Call S the propor­
tion of players progranuned for playing strategy Xl . The player pro­
grammed for 1 will get: 

UI = s.3 + (1 - s)2 = S + 2 

Similarly: 

U2 = s.O + (1 - s)4 = (1 - s).4 

The average payoff is: 

ü = s(s + 2) + (1 - s)(l - s)4 = 5s2 - 6s + 4 

Figure 7.1 A coordination game 

X, X2 

x, I 3,3 2,0 

X2 0,2 4, 4 
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Then the equation of replication F(s) is: 

F(s) = 5[5 +2 - (5; - 65 +4)) 

and finally: 

F(s) = 5(1 - 5)(55 - 2) 

The equation of replication can be represented graphically by the p 
diagram in Figure 7.2. 

It appears that, in such agame, if the proportion of players p 
grammed for playing strategy x is initially greater than %, the RD w ' 
increase it continuously, up to the point where everybody is playing 
Inversely, this percentage will fall to zero if the game starts at a level oi 
lower than %. 

Notice that the RD has three steady states, that is points for w' . 
F(s) = 0: for 5 = 0,5 = %and 5 = 1. Are they aU equilibrium points 
the game? Clearly, one would not like to consider the point 5 = 
equilibrium, since a slight departure from it implies a continuous mo· 
towards 5 = 0, or 5 = 1. 

This exampfe shows how stability is important in the evolutio 
approach. Let us now leave this particular example and get a more gen 
view about the equilibrium definition. 

Evolutionary equilibrium 

In the evolutionary approach, equilibrium means not only astate 
rest of the dynamical process (a steady state, or a fixed point of 
function describing the dynamics), but also a certain form of stab;" 
of this rest point. More precisely, one can propose the following d 
ition. 

Figure 7.2 Phase diagram of ehe RD in ehe coordination game 

s 

so 
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An evolutionary equilibrium (BE) is any asymptotica11y stable fixed 
point of the dynamica1 process of evolution (see Appendix 1 of this 
chaprer, p. 379, for the definition of asymptotic stability) .• 

In the above example, a simple way to study stability is to consider the 
sign of the slope of funetion F(s). When dF(s)jds < 0, the steady state is 
stable. At points s = 0 and s = 1, the slope of the funetion F(s) is negative; 
at s = ~, the slope is positive. These signs eonfirm that the former points 
are stable steady states, while the latter is not. In other words, s = 0 and 
s = 1 are EE of this game. 

In Example 1 above the EE eorresponds to a 'monomorphie' population, 
that is a population where everybody will play the same strategy (before 
any mutation brought by possible 'mutants'). We want to provide another 
example showing that the EE mayaiso eorrespond to a polymorphie 
population . 

Example 2 
A good example is provided by the Hawk-Dove game. The members of 
a very large population are fighting for the use of a territory, or any 
other partieular valuable searee resouree. V is the value of that resouree 
for any member of this population. Individuals meet at random and 
ean play one or the other of the two following strategies: behave like a 
Hawk (aggressively), or behave like a Dove (nieely). The Hawk is always 
ready to fight, the Dove will always avoid fighting. Every fight has a eost, 
noted C. 

When a Hawk meets a Dove, the latter refuses the fight and leaves the 
plaee. Of course, the Hawk gets all the benefit. When two Doves meet, the 
payoff is shared paeifieally, Vj2 for eaeh. Finally, when two Hawks meet 
eaeh other, they fight until they get half of the value of the resouree minus 
the eost of fighting, that is (V - Qj2. Figure 7.3 summarizes the game. 

If one assurnes a Malthusian dynamies, one gets the following equation 
of replieation: 

F(s) = s(l - s)[s(V - Qj2 + (1- s)Vj2] 

Figure 7.3 The Hawk-Dove game 

Hawk Dove 

Hawk I (V- C)/2, (V-C)/2 V, 0 

Dove 0, V V/2, V/2 
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where 5 is the percentage of the population playing Hawk. To be mOfE' 
precise, give numerieal values to the parameters V and C; for instance I 
V = 4 and C = 16. Then: 

F(5) = 5(1 - 5)(2 - 85) 

This equation has three roots: 5 = 0,5 = ~ and 5 = 1. The phase diagra 
is represented in Figure 7.4. 

A simple look at the arrows describing the dynamies and the fact tha' 
P(5) at point 5 :;::: ~ is negative shows that this point is an EE. It is easy 
check that this is the only EE in this garne. So here the population 
'pol}'Illorphic' at equilibrium. There is a proportion of ~ playing Haw 
and %playing Dove. The equilibrium can be interpreted either as a p 
strategy equilibriurn or as a mixed strategy equilibrium. In the latter cast: 
we have to assume that individuals can be programrned for playing ptrr 
or mixed strategies. 

The mixed strategy equilibrium is the only EE of this garne. It is also 
only symmetrie NE (while there are also two asymmetrie NE: Hawk, D 
and Dove, Hawk). We will see in the next sub-section that it has anotre 
stability property since it is an 'evolutionary stable strategy' (ESS) (: 
definition below). 

RamärIl-' 

Of course. one may use many other ways to represent the evolutio 
dynamics. One can. for instance. consider a discrete time rather than a 
continuous time dynamics. Unfortunately, this change can have dramatic 
effects on the results (see sub-section 7.2.2. the result obtained by Deke 
and Scotchmer. 1992. showingthat in a discrete time model the RD may nc: 
eliminate the strictly dominated strategies) .• 

Figure 7.4 Phase diagram of the RD in the Hawk-Dove game 

F(s)=S 

o s 



EVOlUTIONARY GAMES AND lEARNING 337 

playing Hawk. To be more 
eters V and C; for instance: 

and s = 1. The phase diagram 

ynamics and the fact that 
- point is an EE. It is easy to 

So here the population is 
rtiQn of ~ playing Hawk 
erpreted either as a pure 

uilibrium. In the latter case, 
ammed for playing pure 

EI of this game. 1t is also the 
_ntmetric NE: Hawk, Dove 

sub-strl.ion that it has another 
lable strategy' (ESS) (see 

repre.sent the evolution 
te time rather than a 
rge can have dramatic 

result obtained by Dekel 
model the RD may not 

• 

"'rw1(-Dove game 

s/'1 

lleInark 1 

The s presented in (7.4) links the rate of growth of a strategy to its 
performance with respect to the average. But one can imagine other 
relationships. For example. the instantaneous rate of change of astrategy. 
instead of its rate of growth. may be related to the difference between the 
payoff from playing this strategy and the average payoff. Again. the assump­
tion may make a difference (see. for instance. in Friedman. 1991). Other 
kinds of dynamics can still be envisaged for describing the evolution process. 
However. it is reasonable to require that they all verify a condition of 
compatibility with the fitness function (Friedman. 1991): the fitter strategies 
must grow compared to those which fit less weil.. 

7.1.2 Evolutionary stable strategies 

A particular concept of equilibrium, caUed 'Evolutionary stable strategy' 
(ESS) has been proposed by Maynard Smith and Price (1973) in order 
to describe the stable state of the evolutionary process. The basic idea of 
ESS is to require that the equilibrium can 'resist' mutant invasion. While 
the RD is studying the dynamical property of a given strategy, the ESS 
concept focuses on a different issue: the study of possible mutations to 
unused strategies. 

Suppose that the population is originally playing a strategy x, which can 
be a pure or a mixed strategy, and that a small percentage of 'mutants', 
say e, playanother strategy x. 

Definition 1 (E:wolutlonary stab" stnItel)') 

An ESS means that the incuntbent population gets a higher payoff than 
the invaderswhen pairs ofplayers are randomly chosen. Each player has 
a (1- 8) chance to meet someone playing strategy % and a probability 8to 
meet an invader. So the condition defining the ESS can be written: 

u[x, (1 - 8)% + d] > u[x, (1 - &)x + Bx'] (7.10) 

where 6 is positive and sufficiently smaU (0 < 8 < 8).• 

The above definition is sufficient to define an ESS, but it is common and 
useful to present an equivalent two-part condition. Notice first, using the 
linearity of expected utility, that: 

u[x, (1 - e)x + er] = (1 - e)u(x, x) + E u(x, x) 

Then (7.10) can be rewritten: 

(1 - e)u(x, x) + e u(x, x) > (1 - e)u(x, x) + e u(x, x) (7.10') 
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This inequality has to be verified only for values of e elose to O. Henee for 
any X ::/= x: 

(i) u(x, X) > u(x, X) 

or 

(ü) if u(x, x) = u(x', x), then: u(x, x) > u(x, x') (7.11 

In eondition (7.11), part (i) makes it dear that an ESS must be a NE. I ~ 
means that when all players play X, it is unprofitable for any player ro 
deviate and play x. Part (ü) shows that ESS is a kind of refinement 0: 
symmetrie NE. Even if strategy X eannot do better than x against playe~ 
programmed for X (that is, in a weak NE ease), it can still win agains: 
strategy x when opponents play x. 

Example I 

A Prisoner's dilemma game is given in Figure 7.5. If the game is played 
only onee, the DSE (D, D) also eorresponds to an ESS. Clearly, with x fu: 
the strategy Defect (or I Aggressive'), and x for Cooperate (or 'Paeific' 
and applying (7.10'), one gets: 

3(1 - e) + 6e > 2(1 - e) + Se 

Now what would happen if the game were repeated many times wiir.-· 
out diseounting, and if mutants were playing the so-called 'Tit-for-ta~ 

(TFf) strategy'. It has been shown (see Axelrod and Hamilton, 1981) tha· 
the strategy (D, D) eannot resist the invaders. 

A player programmed for TFT will eventually lose once against a play 
programmed for Defection, but thereafter will always also play Defeetior 
On average (recalling that there is no discounting) over a large number 
runs, she (or he) will get as mueh as the players who ehoose Defection 
the first run, specifically a payoff of 3. So: 

u(TFT, D) = u(D, D). 

However, when they meet eaeh other the mutants ean perform better thr 
when a player programmed for Defeetion meets them: respectively, 

Figure 7.5 A Prisoner's dilemma 

Cooperate (C) Defect (D) 

Cooperate (C) 5, 5 ·1 2,6 


Defect (D) 6, 2 3, 3 
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average 5 and 3 (that is because the mutants maintain a strategy of 
cooperation when the opponent does the same and switch to Defection 
when the opponent chooses this strategy). So, we also have: 

u(D, TFT) < u(TFT, TFT). 

Strategy D does not verify condition (7.11)(ü), and is not in this case an 
ESS. 

Example 2 

The payoffs of a coordination game are given in Figure 7.6. 
This game has three NE: (Xli Xl)' (X2, X2), and the mixed strategy equi­

librium (m, m) = (~, %). The first two are ESS, but the latter is not. 
Let us check for the strategy (X2, X2), which provides a payoff of 1 for 

each player. The expected payoff of an individual playing strategy 2, 
when she (or he) has a (1 - 6) chance of meeting someone playing the 
same strategy and a 6 probability of meeting a mutant is: 

(1 - 6)1 + 6.0 = (1 - 6) 

The expected payoff of someone playing strategy 1 and facing the same 
distribution of opponents is: 

(1 - 6)0 + 6.3 = 3.6 

Obviously, with a small value for 6, the former number is higher than the 
latter and condition (7.10') is met. The strategy (X2, X2) is an ESS. It is 
interesting to note here that the inefficient NE (X2, X2) may still appear as an 
equilibrium outcome of an evolutionary process . 

By the same reasoning one can check that the strategy (Xli xI) is 
also an ESS. However the mixed strategy (m, m), although being a NE, 
is not an ESS. The strategy (m, m) can be invaded by a pure strategy Xl 

or X2. 

Let us consider a population playing (m, m), and mutants playing X2. 

Wehave: 

u(m, m) 
3 = U(X2, m) = 4 

Figure 7.6 A coordination game 

X1 X2 

X1 I 3,3 0,0 

X2 0,0 1, 1 
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So we are typieally in the case where condition (ii) of (7.11) must be 
considered. But precisely here the condition is not met: 

3 
u(m, X2) = .4' but: U(X2, X2) = 1 

so: 

u(m, X2) < U(X2, X2) 

The mutants are doing as well as the incumbent population when the~ 
meet an incumbent but they perfonn better when they meet each other. 0: 
course, mutants playing strategy Xl will also invade a population playin 
(m, m). 

Remark I 

In some games there is no ESS. As Haigh (1975) has shown. the number of 
ESS is always finite. possibly zero.• 

7.1.3 	 Neutral stability, evolutionary stable sets and robustness against 
equilibrium entrants 

Neutral stability or weak ESS 


In the fonnal definition of an ESS in 7.1.2, we used a strict inequality, bu' 

what happens if the mutant strategy can do as weIl against itself as th. 

incumbent strategy does? In the latter case, mutants are called 'neutral 

The concept of a 'Neutrally stable strategy' (NSS) then is defined as an ES. 

with weak inequality. 


Definition 1 (NeutnJ'ly sta",. 1trCrte1Y) 

x E X is a NSS if for every strategy :x' =1= x there exists some s E (0, 1 
such that for atl B E (0, B) the following inequality is satisfied: 

u[x, er + (1 - 8)X] ~ u[x, er +(1 - 8)X)_ 

This inequality can be rewritten as: 

(i) u(x, x) > u(x', x) 
(ii) if u(x, x) = u(x', x) then: u(x', x) ~ u(x', x') 

Obviously neutral stability is less demanding than evolutionary stabUi . 
since the condition guarantees here only that the mutants cannot do bett 
than the incumbent population. Neutral stability is still a refinement I 

symmetrie NE: 
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ESS c NSS c NE 

Now, sinee neutral mutants ean get as mueh as the ineumbents, they may 
stay in the game. Henee, eaeh neutral mutation will inerease the share of 
neutral mutants in the total population. Such a progressive 'invasion' of 
the population by neutral rnutants is ealled an ' evolutionary drlft'. The 
problem is that at some point the evolutionary drift may destabilize 
the NSS. A new eoneept of stability defined on sets of NE (Thomas, 
1985) is then useful in order to deal with this risk of destabilizing evolu­
tionary drift. 

Evolutionary stable sets 

A set of symmetrie NE strategies is ealled 'Evolutionary stable' (ES) if eaeh 
strategy in the set can do at least as weil against any elose strategy x' as it 
can do against itself and if the mutant strategy also belongs to the set in 
the case of equal payoffs. 

Definition " (Evolutlonory stobt. set) (Kondorl, 1997) 

A closed set reX ia ES in a symmetrie two-player game if: 

(i) each element of X· is a NSS and 

(ü) x EX-, u(x, x) = u(y, x) and u(x, y) = u(y, y) implies y E r. 


In other words, the evolutionary drift can never lead to an unstable 
point. At the border, the mutants would do strictly worse than the incum­
bent population. 

Example 

In the repeated Prisoner's dilemma, the TFf strategy is an NSS. However 
one can check that it does not belong to an ES set, since for TFT and C 
(cooperate) we have: 

U(TFT, TFT) = U(C, TFT) and U(TFT, q = U(C, q 

There ean be an evolutionary drift from TFT to C. Yet, C is not a NE, and 
hence not a NSS. 

This example brings us to the interesting extension suggested by 
Swinkels (1992a). In econornic applieations one may want to consider 
that the agents, ineluding the mutants, are smart enough to avoid 
trying stupid strategies against ineumbent strategies. In the latter example 
strategy C is indeed very fragile compared to TFf. Even with weak 
rationality, an eeonornic agent would hesitate before using C against 
TFT. 
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Equilibrium entrants and robustness to equillbrium entrants 

Swinkels (1992a) argues that conditions on ESS might be too stringent in 
economic contexts. When players are firms it seems reasonable to restrict 
attention to mutant strategies that themselves fulfil astability condition 
In this line, Swinkels proposes a new stability concept, that he call~ 
'Robustness against equilibrium entrants' (REE) permitting us to consider 
only 'rational' mutations or experirnentation and eliminate the 'stupid 
ones. Assuming that the population share of mutants is e, the post­
mutation mixed strategy is: w = d + (1 - e)x. An entrant is called 
an equilibrium entrant if x' is a best reply to w. But if x' is a best reply t 
w, then a plan of invasion of mutants representing e per cent of the 
population becomes self-enforcing. One may want to define situation!' 
where this risk does not exist, and this is precisely the objective of thE­
REE. 

DefInition 5 (RobultnelS a,crJnJt .qu"IIwIum entrants) 

Asymmetrie strategy profile (x, x) is REE if there exists sorne '8 E (0, 1) 
such that if x' i: x and 8 E (0, e) iben x' is not a best reply to 
er + (1 - 8)%: 

r Si! BR[u + (1 - e)x] (where BR is the set of best responses).• 

It can be shown that if a strategy is REE, it is also a best reply to itse 
that is, it must be a NE. One can even go further (Swinkel, 1992a) anG 
show that REE implies properness, thus being a particular refinement 
NE (see sub-section 4.2.1 of chapter 4 for a definition of a proper equilir­
rium). Since REE is less stringent that ESS, we have the foHowing inch.: · 
sions of sets: 

ESS c REE c NE 

The motivations behind the Swinkels' stability concept are twofold. 0,­

the one hand, when a11 mutations are considered then same games can fa­
to have an ESS (see Remark 1 in sub-section 7.1.2). On the other hand, 
some mutations are unplausible then the relationship between ESS an..;. 

Nash refinements become less compe11ing if it does not persist in th 
presence of rational mutants. Note that although some games witho 
ESS present strategies that are REE, the Swinkels' notion also fails to e" !­
in some games. 

An extension in terms of set-valued concepts is suggested _ 
Swinkels (1992a) under the name: Equilibrium evolutionary stable .~ 

(EES). 
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Definition 6 (Equl"brlum evoluclonGry .cer"" tel) 
A set X· c X is EFS if it is a minimal c10sed non- empty set such that: 

(i) 	 Xis a sub-set of the set of NE 
(ü) 	 for some i E (0, 1), if e E (0, ij, x E X", %' EX and %' E BR 

(a + (1 - e)x), then: 

a +(1 - e)x E X" .• 

The definition states that an EES set is a minimal closed set of symmet­
rie NE such that the population can never be led out of X by aseries of 
small equilibrium entries. 

7./.4 Asymmetrical evo/utionary games 

The previous sections dealt with single-population games. But, even if the 
payoff matrix is symmetrie, an evolutionary game may easily show inter­
esting asymmetries between the players. Maynard Smith (1982) raised the 
possibility that the animals could condition their behaviour on whether 
theyare the 'row' or the 'column' player, that is to say that the strategies 
are then conditioned by the role played in the game (summarized by the 
phrases 'row and column'). üf course asymmetries can be worse still, 
payoffs being different between the row and the column players. In 
economies or business, the situations involve different kinds of players, 
in the sense that their avallable strategies are different and that they do not 
get identical payoffs from their participation in the game. If we want to 
model games with seHers and buyers, or incumbent firms and potential 
entrants, it is necessary to extend the evolutionary approach to multi­
population settings. For reasons of simplicity, we will consider only the 
case of two different populations, but extensions to K populations (K > 2) 
is fairly possible. 

Suppose that two large populations interact, the members of the first 
one being chosen randomly to meet also randomly chosen members of the 
second population. In order to avoid the diffieulty coming from different 
speeds of adjustment, let us assurne that the two populations are of equal 
size. The natural extension of the evolutionary model is then to consider a 
RD for each population. We have thus two replication equations: 

s;(x) = s;(.t)[u:(xi
) - ~n i = 1, 2 	 (7.12) 

One can study the stationary points of the dynamies and verify the 
stability condition. A major finding in the multi-population case is that 
the mixed strategy profiles cannot be asymptotically stable. 
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One can also apply the ESS concept, although adapted to the multi­
population context (see Weibull, 1995, section 5.1), and check whether the 
strategies are ESS or not. Since the members of a given population are now 
supposed to meet randomly members of a different population, the def­
inition of an ESS given in (7.2) cannot any longer apply. A new definition 
of an ESS, allowing for asymmetrie mutants, can be defined, as in Swin­
kels (1992b). 

Another way to apply the concept of ESS is to symmetrize the game (see 
exercises 7.7 and 7.8). 'Symmetrizing' means that the player's role is 
chosen by Nature before the game starts. Ex ante, players do not know 
which role they will play and must then calculate their expected payoff 
under the assumption that they have an equal chance to be a row or a 
column player. An important result proven by Selten (1980) is that an ESS 
in such a symmetrized game is astriet equilibrium. Since a mixed strate~' 
equilibrium by definition is not a strict equilibrium, mixed equilibria 
cannot be ESS of asymmetrie games. On the other hand, one must noticE 
that the 'symmetrization' of the game may work weH for some games bu: 
may not fill many asymmetrie games, the specific roles not being inter­
changeable (for a more complete discussion on this topic see Binmore anc 
Samuelson, 2001). 

Example I 

Agame of entry may oppose incumbent firms (player 1) and potentia. 
entrants (player 2). In order to maintain the assumption of large popula­
tions of players, one must imagine here a large number of incumbe 
firms, being in a position of local monopolies and many potential entran 
choosing randomly the location of their attack. The numerous possibilitiec 
of matching and the fact that two particular firms may meet only occa­
sionaHy means that any reputational effect is negligible. What remairb 
is that each entrant knows she (or he) is facing either an aggressi 
incumbent or a passive (accommodating) one. Similarly, the incumber 
has only a probabiIity on the chances of entry. Let p be the proportion 
aggressive incumbents and q the proportion of potential entrants w 
actually enter. 

The payoffs are given in Figure 7.7. 
What is the RD for each category of player? For the local monopolies 

Figure 7.7 An entry game 

Enter Do not enter 

Aggressive -1, -1 8,0 

Passive 3,3 8,0 
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We get: 

p=p[ul-u1
] 

where: uj = q( -1) + (1 - q)8 = 8 - 9q 
and since: u~ = 3q + (1 - q)8 = 8 - 5q 
then: u1 = p(8 - 9q) + (1 - p)(8 - 5q) = 8 - 5q - 4pq 
and: p= p[(8 - 9q) - (8 - 5q - 4pq)] = p(l - p)( - 4q) 
Therefore if q is positive, pis negative; which means that the percentage of 
incumbents playing aggressive is continuously decreasing. 

Conceming the potential entrants, one gets by the same reasoning: 

2q= q[u~ - u ] 

2where ui = 3 - 4p and u = 3q - 4pq 
Then: q= q (1 - q)(3 - 4p) and qis positive if p < %. In other words, the 
number of potential entrants who actually enter increases continuously if 
the proportion of aggressive local monopolies is lower than %. 

The phase diagrarn in Figure 7.8 represents the dynamies of this 
example. 

It appears clearly on the graph that the only stable point of the RD is the 
point corresponding to q = 1 and p = 0. The incumbent fums accornrno­
date and the potential entrants do enter. Notice that the dynamical process 
has other stationary points: (p = 0, q = 0), (p = 1, q = 1), (p = 1, q = 0) 
and (p = %, q = 0). Among these four steady states, thIee are NE: two 
equilibria in pure strategies points: (p = 0, q = 1), (p = 1, q = 0), and the 
mixed strategy equilibrium (p = %, q = 0). Yet only the equilibrium: 
(p = 0, q = 1) is perfeet. It is interesting to notice that it is also the EE of 
the garne (the only asyrnptoticaHy stable point of the dynamies). We will 
say more on the relationship between evolutionary equilibria and non­
cooperative garne equilibria in the next section. 

Figure 7.8 Phase diagram of the RD in the entry game 

q 

1 I: 

j~ 

o 3/4 1 P 
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We must emphasize that the couple of strategies (p = 0, q = 1) also has 
the property of being an ESS (see exercise 7.7). In the end, the only SPE of 
this game is also an EE and an ESS. This correspondence will be investi­
gated further later. 

It is intriguing to see how players who do not chose rationally (they are 
just prograrnmed) end up playing a SPE. A criterion like perfection seems 
to require a very strong intelligence of the game and a high capacity for 
computation, to solve for instance the backward induction type of calcu­
lation. Without any capacity for computation the players can find the 
same solution through an evolution process. The only drawback of the 
evolutionary approach is that the process takes time. In economic or 
business applications, the external conditions of the game may change 
rapidly. The evolutionary approach can be applied only for problems not 
charaderized by rapidly changing environments (see Camerer, 1991, for a 
pessimistic view on this matter). 

Example 2 

We saw above that in the Hawk-Dove game the only EE was the 
mixed strategy: (~, %). Yet, what would happen if the game were played 
by two distinct populations? The mixed strategy is no longer an EE in 
this case. 

Distinguishing two populations in this game means that there are 
two (large) groups of individuals who do not give the same value to the 
scarce resource: VI =I=- V2 • Let us say that the scarce resource is a territory, 
and players 1 are residents, while players 2 are foreigners. So, normally, 
VI > V2 • For instance VI = 6, V2 = 2, and as in the previous case, the cost 
of a fight is C = 16. Then the payoff matrix is as in Figure 7.9. 

Now p is the proportion of residents playing Hawk and q is the propor­
tion of foreigners playing Hawk. The Replication equations are: 

P= p(UR - UR) 

and 

Cf = q(Uf - Üf) 

where R is used for residents and 1 for invaders. 
After some calculation, we get: 

Figure 7.9 An asymmetrie Hawk-Dove game 

Hawk I 
Dove 

Hawk 

-5, -7 

0,2 

Dove 

6, 0 

3,1 



EVOlUTIONARY GAMES AND lEARNING 347 

trategies (p = 0, q = 1) also has 
- .ll. In the end, the only SPE of 

s pondence will be investi­

not chose rationally (they are 
c:ri terion like perfection seems 
game and a high capacity for 

·.ud induction type of calcu­
the players can find the 

. The only drawback of the 
,es time. In economic or 
of the game may change 
lied only for problems not 

I:s (see Camerer, 1991, for a 

e the only EE was the 
if the game were played 

öi' is no longer an EE in 

~e means that there are 
t give the same value to the 

scarce resource is a territory, 
- Me foreigners. So, nonnally, 

;n the previous case, the cost 
as in Figure 7.9. 
Hawk and q is the propor­

'on equations are: 

.ers. 

e 

~ 
~ 

Figure 7.1 0 Phase diagram of the RD in an asymmetrie Hawk-Dove game 
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p= p(l - p)(3 - Bq) 

P> O( < 0) if q < ~ ( > ~) 
Cf = q(l - q)(l - Bp) 

Cf > O( < 0) if P < ~ ( > ~) 

The dynamics can be represented by the phase diagram in Figure 7.10. 
The RD shows two stable points (p = 0, q = 1) and (p = 1, q = 0). These 

are the EE of this game. All the players in a given population end up 
choosing to be Hawks while in the other population people choose to be 
Doves, depending on the starting point. No combination of Hawks 
and Doves can be maintained in the same population as an equilibrium 
of the evolutionary process. One can check that the two EE are also ESS 
(see exercise 7.8). 

7.2 	 Extensions and generalizations to economics: 
evolution, rationality and effidency 

7.2.1 	 Connections between Replicator Dynamics, E.volutionary stable 
strategies and other equilibrium concepts 

In the previous sections we have already underlined some connections 
between the evolutionary equilibrium concepts and the standard equilib­
rium concepts of non-cooperative game theory. When we defined an ESS, 
we stressed that it was a kind of refinement of symmetric NE. We also 
noticed that the ESS were stable stationary points of the dynamical 


