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rationality and efficiency

7.3 Learning models

74 Applications

Evolutionary games have been developed in biology and mathematics,
notably by J. Maynard Smith and his collaborators and after them by
many other researchers, including the Nobel prize in Economics,
R. Selten. Evolutionary models have proven very helpful to study the
behaviour of animals in various strategic contexts and to understand
biological evolution. Now, these models are becoming popular among
game theorists and the approach appears to be fruitful in the field of
economics and business studies. One feels that the kind of adjustment
dynamics studied by evolutionary games may be useful for discussing
various types of economic issues where agents react slowly through
emulation, imitation, or learning. Of course the kind of modelling suitable
for applications in economics must be different from that used in biology.
Even if managers, sellers and buyers, or other economic decision makers
sometimes have very limited rationality, they can be expected to behave
more rationally than birds or rats. It is then the introduction of specific
learning processes that can bridge the gap between biological games and
economic behaviour.

There is a particular reason why economists could now be interested in
evolutionary models. Non-cooperative GT, as applied in economics, is
facing two difficulties: first, in many economic problems, it is not entirely
clear how a NE can be finally reached by the players and, second, when
there are many equilibria, with different implications, it is important to
understand how a particular equilibrium will eventually be selected. It
happens that the dynamic adjustments described by evolutionary models
may give interesting answers to both these questions. So, even though
economic applications are still rare and some progress is still to be made
in order to adapt the modelling, the path seems a very promising one to
follow.
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The present chapter will mainly develop the framework put forward
to study biological games. Some applications to economic problems in the
field of industrial organisation or international trade theory will be pre-
sented. Section 7.1 introduces to the basic concepts of Evolutionary Game
Theory (EGT): the ‘Replicator Dynamics’ (RD) and “Evolutionary stable
strategies’ (ESS) in both symmetrical and asymmetrical evolutionary
games. Section 7.2 presents extensions of the basic concepts and discusses
their relevance for economics. The relationship between RD, ESS
and other equilibrium concepts is also presented in this section. In section
7.3, we present a brief introduction to learning models, both an older
approach in the tradition of the Cournot adjustment model, and new
developments which are designed to make EGT fit better traditional
economic problems. Finally, section 7.4 will be devoted to a few
examples of applications of the concepts of evolutionary games to eco-
nomic issues.

7.1 Replicator Dynamics and evolutionary stable
strategies: the basic biological concepts

The most interesting cases for the economist involve different populations
of players. However, in order to keep things simple at first, let us intro-
duce the RD and the concept of ESS by considering the case often studied
in biology of a population of a single species, also called a homogeneous
population, playing a symmetric game. Then, we will see how these
concepts are used when there are more than one population.

In the single-population case, one studies the random matching o
individuals who have the same set of strategies available and whose
payoffs are entirely symmetric. Here a “strategy’ means a special behas-
iour and each individual is genetically programmed for playing a particu-
lar strategy. In biological games, a payoff may be interpreted as thw
number of offspring. It is also called fitness’.

Letus call X = {x1,..., xi,..., Xu} the set of pure strategies available %
the players, and U(x, x) the payoff when one agent plays x and her (=
his) opponent plays x'. In this chapter we will denote explicitly by m th
mixed strategies.

7.1.1 The Replicator Dynamics

At one point in time there may be different fractions of the total popuis
tion programmed to play a particular strategy. In order to study tw
evolution of these groups, admitting that only the fittest will survive &
type of dynamic adjustment must be imagined. It is common in biologics
games to use a kind of Malthusian dynamics, also called the E!
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According to the RD, the fraction of the population playing a particular
strategy will increase if it performs better in terms of the fitness function
than the population average. If a type of players gets less than the average
payoff, then its percentage in the population will decrease.

There is a simple large population of agents playing the same symmet-
ric game. In order to keep the presentation as simple as possible, the
number of pure strategies is limited to two: x and x. An extension to a
larger number of strategies is straightforward.

Let n; and 7, be the number of agents, respectively, playing x and x' at
time # and N; the total population.

Let s¢(x) denote the proportion of agents playing strategy x at time £

si(x) = nt—i‘n—t = 1':7; 7.1)
Agents programmed for playing x have the expected payoff:

uy(x) = se(x)ug(x, x) + s¢(x )ue(x, x) (7.2)
The average payoff in the population is then:

iy = si(X)up (%) + s1(x )ue(x) (7.3)

Starting from these assumptions, one can define several versions of the
RD. The most common version in a continuous time is expressed in
the following differential equation:

3(x) = s(0)[u() — ] = F(s) (7.4)

This equation of replication describes the evolution process of populations
programmed for playing the diverse strategies: in this case x and x. It
reflects the basic idea defining the RD: if strategy x is performing better
than the average, the agents who play it will see their proportion increase
in the total population.

There are different ways to obtain (7.4). We present two ways below,
but if the the logic of the RD is understood, the reader may prefer to go
directly to the numerical examples which follow.

A non-overlapping generations model of the Replicator Dynamics

(Van Damme, 1991)

In each period, agents are paired at random to play a symmetric game.
Their payoffs correspond to their offspring who replace them in the next
period. The number of players choosing each strategy depends on the
payoffs in the previous play of the game.



332 GAME THEORY AND ECONOMICS

If n; players play x at t, then nu, players will play x at t+1. Ti
expected number of players in period ¢ + 1 is:

gy (x) + nug(x') = Ni

It is equal to N,ii;. The proportion of players choosing x in period t +1 &

s (x)
(ny + )iy

ug(x)

st (x) = = 54(x) =

(74

In this discrete time model, the evolution of the population can be reps
sented as:

uy(x) — 1 ~
St41 — St =s,(x)—'(—l)-7—-5 74
t

Considering very short time periods allows us to write (7.6) as:

§= s(x)z(—xﬂ

e |
Finally, a rescaling of time leads to the following equation:

§ = s()[u(x) - 1] o
which has the same solution trajectories as (7.7) and which is (7.4).

An overlapping generations model of the Replicator Dynamics
(Binmore, 1992; Samuelson, 1997)

In the previous model, all agents were reproducing themselves at
same time and none of them could survive after reproduction. T
assumption may apply to some kinds of animal species, but certas
not all. Moreover, it does not fit well the applications to economs
where we would like to have agents learning over time.

Now we assume that in each period of time of length 7, a fraction *
the population reproduces itself. Payoffs of the game are again takes
representing offspring and each agent playing strategy x will give birts &8
u¢(x) offspring at time ¢.

In period ¢ + 7, the number of agents playing strategy x is given &

Nppr = Ny + tn,u,(x)

The total number of agents next period is:

Nipr = m(1 + tug(x)) + n',(l + ‘cu,(x'))
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The proportion of agents playing x next period is:

(T ¥ n,(l s TU((X))
Nipe (1 + tug(x)) + ny(1 + tu(x'))

St4<(¥) =

or:

J se(x)(1 + Tuy(x))
) = S Fru@) + se) (L T 7))

Then, the evolution of the population can be represented as:

TU(x) — T

Sels) = 80) = ) ") Tt 79)
Taking the limit T — 0 in (7.9) gives:

§ = s(x)(u(x) — @)
which is again (7.4).
Example |
Consider the game of coordination described by the payoff matrix in
Figure 7.1.

The players have two alternative strategies, x; and x,. Call s the propor-
tion of players programmed for playing strategy x;. The player pro-
grammed for 1 will get:

U =s3+(1—-s2=s+2
Similarly:

up=50+(1-s4=(1-s)4
The average payoff is:

i=5(5+2)+ (1—-s)(1—s)4="5*—65+4

Figure 7.1 A coordination game
Xq X
Xq 3,3 2,0
x| 02 4.4
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Then the equation of replication F(s) is:
F(s) = s[s 42 — (55* — 65 + 4)]

and finally:
F(s) =s(1 —s)(5s — 2)

The equation of replication can be represented graphically by the phase
diagram in Figure 7.2.

It appears that, in such a game, if the proportion of players pro-
grammed for playing strategy x is initially greater than %, the RD will
increase it continuously, up to the point where everybody is playing it
Inversely, this percentage will fall to zero if the game starts at a level of
lower than %.

Notice that the RD has three steady states, that is points for which
F(s)=0: for s=0,s =% and s =1. Are they all equilibrium points o
the game? Clearly, one would not like to consider the point s = % as a
equilibrium, since a slight departure from it implies a continuous mows
towards s =0, ors =1.

This example shows how stability is important in the evolutionary
approach. Let us now leave this particular example and get a more genera
view about the equilibrium definition.

Evolutionary equilibrium

In the evolutionary approach, equilibrium means not only a state o
rest of the dynamical process (a steady state, or a fixed point of the
function describing the dynamics), but also a certain form of stability
of this rest point. More precisely, one can propose the following defin
ition.

Figure 7.2 Phase diagram of the RD in the coordination game

§

2/5 1
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Definition | (Evolutionary equilibrium)
An evolutionary equilibrium (EE) is any asymptotically stable fixed
point of the dynamical process of evolution (see Appendix 1 of this
chapter, p. 379, for the definition of asymptotic stability).s

In the above example, a simple way to study stability is to consider the
sign of the slope of function F(s). When dF(s)/ds < 0, the steady state is
stable. At points s = 0 and s = 1, the slope of the function F(s) is negative;
at s = %, the slope is positive. These signs confirm that the former points
are stable steady states, while the latter is not. In other words, s = 0 and
s =1 are EE of this game.

In Example 1 above the EE corresponds to a ‘monomorphic’ population,
that is a population where everybody will play the same strategy (before
any mutation brought by possible ‘mutants’). We want to provide another
example showing that the EE may also correspond to a polymorphic
population.

Example 2

A good example is provided by the Hawk-Dove game. The members of
a very large population are fighting for the use of a territory, or any
other particular valuable scarce resource. V is the value of that resource
for any member of this population. Individuals meet at random and
can play one or the other of the two following strategies: behave like a
Hawk (aggressively), or behave like a Dove (nicely). The Hawk is always
ready to fight, the Dove will always avoid fighting. Every fight has a cost,
noted C.

When a Hawk meets a Dove, the latter refuses the fight and leaves the
place. Of course, the Hawk gets all the benefit. When two Doves meet, the
payoff is shared pacifically, V/2 for each. Finally, when two Hawks meet
each other, they fight until they get half of the value of the resource minus
the cost of fighting, that is (V — C)/2. Figure 7.3 summarizes the game.

If one assumes a Malthusian dynamics, one gets the following equation
of replication:

F(s) =s( —s)[s(V—-C)/2+ (1 —5)V/2]

Figure 7.3 The Hawk-Dove game

Hawk Dove
Hawk u/—C)/z, (V-0)/2 V.0
Dove r o,V Vi2, Vi2
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where s is the percentage of the population playing Hawk. To be more
precise, give numerical values to the parameters V and C; for instance
V =4 and C =16. Then:

F(s) = s(1 — s)(2 — 8s)

This equation has three roots: s =0, s = Y% and s = 1. The phase diagram
is represented in Figure 7.4.

A simple look at the arrows describing the dynamics and the fact that
F'(s) at point s = 7 is negative shows that this point is an EE. It is easy to
check that this is the only EE in this game. So here the population is
“polymorphic’ at equilibrium. There is a proportion of % playing Hawk
and % playing Dove. The equilibrium can be interpreted either as a pure
strategy equilibrium or as a mixed strategy equilibrium. In the latter case
we have to assume that individuals can be programmed for playing pure
or mixed strategies.

The mixed strategy equilibrium is the only EE of this game. It is also the
only symmetric NE (while there are also two asymmetric NE: Hawk, Dove
and Dove, Hawk). We will see in the next sub-section that it has anothes
stability property since it is an ‘evolutionary stable strategy’ (ESS) (see
definition below).

Of course, one may use many other ways to represent the evolution
dynamics. One can, for instance, consider a discrete time rather than a
continuous time dynamics. Unfortunately, this change can have dramatic
effects on the results (see sub-section 7.2.2, the result obtained by Deke!
and Scotchmer, 1992, showing that in a discrete time model the RD may ne:
eliminate the strictly dominated strategies).m

Figure 7.4 Phase diagram of the RD in the Hawk-Dove game

F(s)=8
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The s presented in (7.4) links the rate of growth of a strategy to its
performance with respect to the average. But one can imagine other
relationships. For example, the instantaneous rate of change of a strategy,
instead of its rate of growth, may be related to the difference between the
payoff from playing this strategy and the average payoff. Again, the assump-
tion may make a difference (see, for instance, in Friedman, 1991). Other
kinds of dynamics can still be envisaged for describing the evolution process.
However, it is reasonable to require that they all verify a condition of
compatibility with the fitness function (Friedman, 1991): the fitter strategies
must grow compared to those which fit less well.m

7.1.2  Evolutionary stable strategies

A particular concept of equilibrium, called ‘Evolutionary stable strategy’
(ESS) has been proposed by Maynard Smith and Price (1973) in order
to describe the stable state of the evolutionary process. The basic idea of
ESS is to require that the equilibrium can ‘resist’ mutant invasion. While
the RD is studying the dynamical property of a given strategy, the ESS
concept focuses on a different issue: the study of possible mutations to
unused strategies.

Suppose that the population is originally playing a strategy x, which can
be a pure or a mixed strategy, and that a small percentage of ‘mutants’,
say ¢, play another strategy x'.

Definition 2 (Evolutionary stable strategy)
An ESS means that the incumbent population gets a higher payoff than
the invaders when pairs of players are randomly chosen. Each player has
a (1 — &) chance to meet someone playing strategy x and a probability & to
meet an invader. So the condition defining the ESS can be written:

ulx, (1 —e)x + &x'] > ufx, (1 — &)x + &) (7.10)
where ¢ is positive and sufficiently small (0 < & <z).m
The above definition is sufficient to define an ESS, but it is common and

useful to present an equivalent two-part condition. Notice first, using the
linearity of expected utility, that:

ulx, (1 —e)x + &x'] = (1 — eu(x, x) + eu(x, x')
Then (7.10) can be rewritten:

(1 = e)u(x, x) +eu(x, x') > (1 — e)u(®, x) + eu(x, ¥) (7.10")
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This inequality has to be verified only for values of ¢ close to 0. Hence for
any ¥’ # x:

(i) u(x, x)>u(,x)
or
(i) if u(x, x) = u(x, x), then: u(x, ') > u(¥’, x') (7.11)

In condition (7.11), part (i) makes it clear that an ESS must be a NE. It
means that when all players play x, it is unprofltable for any player to
deviate and play x'. Part (ii) shows that ESS is a kind of refinement of
symmetric NE. Even if strategy x cannot do better than x’ against players
programmed for x (that is, in a weak NE case), it can still win agains:
strategy x' when opponents play x'.

Example |

A Prisoner’s dilemma game is given in Figure 7.5. If the game is played
only once, the DSE (D, D) also corresponds to an ESS. Clearly, with x for
the strategy Defect (or ‘Aggressive’), and x’ for Cooperate (or ‘Pacific’)
and applying (7.10), one gets:

3(1 —e) + 66> 2(1—¢)+5e

Now what would happen if the game were repeated many times with-
out discounting, and if mutants were playing the so-called ‘Tit-for-tat
(TFT) strategy’. It has been shown (see Axelrod and Hamilton, 1981) that
the strategy (D, D) cannot resist the invaders.

A player programmed for TFT will eventually lose once against a player
programmed for Defection, but thereafter will always also play Defection
On average (recalling that there is no discounting) over a large number o
runs, she (or he) will get as much as the players who choose Defection a
the first run, specifically a payoff of 3. So:

u(TFT, D) = u(D, D).

However, when they meet each other the mutants can perform better than
when a player programmed for Defection meets them: respectively, on

Figure 7.5 A Prisoner’s dilemma
Cooperate (C) Defect (D)
Cooperate (C) 55 2,6
Defect (D) 6,2 3,3
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average 5 and 3 (that is because the mutants maintain a strategy of
cooperation when the opponent does the same and switch to Defection
when the opponent chooses this strategy). So, we also have:

w(D, TFT) < w(TET, TFT).

Strategy D does not verify condition (7.11)(ii), and is not in this case an
ESS.

Example 2
The payoffs of a coordination game are given in Figure 7.6.

This game has three NE: (x1, x1), (¥2, x2), and the mixed strategy equi-
librium (m, m) = (1/4, 3/4). The first two are ESS, but the latter is not.

Let us check for the strategy (x2, x2), which provides a payoff of 1 for
each player. The expected payoff of an individual playing strategy 2,
when she (or he) has a (1 — ¢) chance of meeting someone playing the
same strategy and a ¢ probability of meeting a mutant is:

l-egl+el0=(1-¢)

The expected payoff of someone playing strategy 1 and facing the same
distribution of opponents is:

1—¢e)0+e3 =3¢

Obviously, with a small value for ¢, the former number is higher than the
latter and condition (7.10") is met. The strategy (x2, x2) is an ESS. It is
interesting to note here that the inefficient NE (x2, x) may still appear as an
equilibrium outcome of an evolutionary process.

By the same reasoning one can check that the strategy (x1, x1) is
also an ESS. However the mixed strategy (m, m), although being a NE,
is not an ESS. The strategy (m, m) can be invaded by a pure strategy x;
or Xxs.

Let us consider a population playing (m, m), and mutants playing x».
We have:

u(m, m) = u(xz, m) =%

Figure 7.6 A coordination game
X X2
X 3,3 0,0
% 0,0 1,1




340 GAME THEORY AND ECONOMICS

So we are typically in the case where condition (ii) of (7.11) must be
considered. But precisely here the condition is not met:

3
u(m, x) = i but: u(x;, x) =1

SO:
u(m, x3) < u(xa, x2)

The mutants are doing as well as the incumbent population when they
meet an incumbent but they perform better when they meet each other. Of
course, mutants playing strategy x; will also invade a population playing
(m, m).

Remark |

In some games there is no ESS. As Haigh (1975) has shown, the number of
ESS is always finite, possibly zero.s

7.1.3 Neutral stability, evolutionary stable sets and robustness against
equilibrium entrants

Neutral stability or weak ESS

In the formal definition of an ESS in 7.1.2, we used a strict inequality, but
what happens if the mutant strategy can do as well against itself as the
incumbent strategy does? In the latter case, mutants are called 'neutral
The concept of a "Neutrally stable strategy’ (NSS) then is defined as an ESS
with weak inequality.

Definition 3 (Neutrally stable strategy)
x € X is a NSS if for every strategy x’ # x there exists some € (0, 1)
such that for all ¢ € (0, #) the following inequality is satisfied:

ulx, ex' + (1 —e)x] > ufy, &’ + (1 — )x]m

This inequality can be rewritten as:
(1) u(x, x) >u(, x)
(i) if u(x, x) = u(x’, x) then: u(x’, x) > u(x’, x')
Obviously neutral stability is less demanding than evolutionary stability
since the condition guarantees here only that the mutants cannot do bettes
than the incumbent population. Neutral stability is still a refinement o
symmetric NE:
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ESS C NSS C NE

Now, since neutral mutants can get as much as the incumbents, they may
stay in the game. Hence, each neutral mutation will increase the share of
neutral mutants in the total population. Such a progressive ‘invasion’ of
the population by neutral mutants is called an ‘evolutionary drift’. The
problem is that at some point the evolutionary drift may destabilize
the NSS. A new concept of stability defined on sets of NE (Thomas,
1985) is then useful in order to deal with this risk of destabilizing evolu-
tionary drift.

Evolutionary stable sets

A set of symmetric NE strategies is called "Evolutionary stable’ (ES) if each
strategy in the set can do at least as well against any close strategy x’ as it
can do against itself and if the mutant strategy also belongs to the set in
the case of equal payoffs.

Definition 4 (Evolutionary stable set) (Kandori, 1997)
A closed set X* C X is ES in a symmetric two-player game if:

(i) each element of X* is a NSS and
(i) x€ X, u(x, x) = ufy, x) and u(x, y) = u(y, y) implies y € X*m

In other words, the evolutionary drift can never lead to an unstable
point. At the border, the mutants would do strictly worse than the incum-
bent population.

Example

In the repeated Prisoner’s dilemma, the TFT strategy is an NSS. However
one can check that it does not belong to an ES set, since for TFT and C
(cooperate) we have:

U(TFT, TFT) = U(C, TFT) and U(TFT, C) = U(C, C)

There can be an evolutionary drift from TFT to C. Yet, C is not a NE, and
hence not a NSS.

This example brings us to the interesting extension suggested by
Swinkels (1992a). In economic applications one may want to consider
that the agents, including the mutants, are smart enough to avoid
trying stupid strategies against incumbent strategies. In the latter example
strategy C is indeed very fragile compared to TFI. Even with weak
rationality, an economic agent would hesitate before using C against
TFT.
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Equilibrium entrants and robustness to equilibrium entrants

Swinkels (1992a) argues that conditions on ESS might be too stringent in
economic contexts. When players are firms it seems reasonable to restrict
attention to mutant strategies that themselves fulfil a stability condition
In this line, Swinkels proposes a new stability concept, that he calls
‘Robustness against equilibrium entrants’ (REE) permitting us to consider
only rational’ mutations or experimentation and eliminate the ‘stupid
ones. Assuming that the population share of mutants is ¢ the post-
mutation mixed strategy is: w=¢&x' + (1 —¢)x. An entrant is called
an equilibrium entrant if X' is a best reply to w. But if x’ is a best reply to
w, then a plan of invasion of mutants representing ¢ per cent of the
population becomes self-enforcing. One may want to define situations
where this risk does not exist, and this is precisely the objective of the
REE.

Definition 5 (Robustness against equilibrium entrants)
A symmetric strategy profile (x, x) is REE if there exists some & € (0, 1)
such that if ¥’ #x and € (0,7) then X' is not a best reply to
ex' + (1 —ex:

¥ & BR[exX' + (1 —e)x] (where BR is the set of best responses).n

It can be shown that if a strategy is REE, it is also a best reply to itsel
that is, it must be a NE. One can even go further (Swinkel, 1992a) and
show that REE implies properness, thus being a particular refinement of
NE (see sub-section 4.2.1 of chapter 4 for a definition of a proper equilib-
rium). Since REE is less stringent that ESS, we have the following inclu-
sions of sets:

ESS C REE C NE

The motivations behind the Swinkels’ stability concept are twofold. On
the one hand, when all mutations are considered then some games can fa:
to have an ESS (see Remark 1 in sub-section 7.1.2). On the other hand,
some mutations are unplausible then the relationship between ESS and
Nash refinements become less compelling if it does not persist in the
presence of rational mutants. Note that although some games without
ESS present strategies that are REE, the Swinkels’ notion also fails to exis
in some games.

An extension in terms of set-valued concepts is suggested by
Swinkels (1992a) under the name: Equilibrium evolutionary stable sets
(EES).
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Definition 6 (Equilibfum evolutionary stable set)
A set X* C X is EES if it is a minimal closed non- empty set such that:

(i) X is a sub-set of the set of NE
(ii) for some 2€(0,1), if e€(0,8,x€X", ¥cX and ¥ €BR
(ex’ + (1 — g)x), then:

e +(1l-exeX'm

The definition states that an EES set is a minimal closed set of symmet-
ric NE such that the population can never be led out of X by a series of
small equilibrium entries.

7.1.4 Asymmetrical evolutionary games

The previous sections dealt with single-population games. But, even if the
payoff matrix is symmetric, an evolutionary game may easily show inter-
esting asymmetries between the players. Maynard Smith (1982) raised the
possibility that the animals could condition their behaviour on whether
they are the ‘row’ or the ‘column’ player, that is to say that the strategies
are then conditioned by the role played in the game (summarized by the
phrases ‘row and column’). Of course asymmetries can be worse still,
payoffs being different between the row and the column players. In
economics or business, the situations involve different kinds of players,
in the sense that their available strategies are different and that they do not
get identical payoffs from their participation in the game. If we want to
model games with sellers and buyers, or incumbent firms and potential
entrants, it is necessary to extend the evolutionary approach to multi-
population settings. For reasons of simplicity, we will consider only the
case of two different populations, but extensions to K populations (K > 2)
is fairly possible.

Suppose that two large populations interact, the members of the first
one being chosen randomly to meet also randomly chosen members of the
second population. In order to avoid the difficulty coming from different
speeds of adjustment, let us assume that the two populations are of equal
size. The natural extension of the evolutionary model is then to consider a
RD for each population. We have thus two replication equations:

5 =i —u] i=1,2 (7.12)
One can study the stationary points of the dynamics and verify the

stability condition. A major finding in the multi-population case is that
the mixed strategy profiles cannot be asymptotically stable.
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One can also apply the ESS concept, although adapted to the multi-
population context (see Weibull, 1995, section 5.1), and check whether the
strategies are ESS or not. Since the members of a given population are now
supposed to meet randomly members of a different population, the def-
inition of an ESS given in (7.2) cannot any longer apply. A new definition
of an ESS, allowing for asymmetric mutants, can be defined, as in Swin-
kels (1992b).

Another way to apply the concept of ESS is to symmetrize the game (see
exercises 7.7 and 7.8). ‘Symmetrizing’ means that the player’s role is
chosen by Nature before the game starts. Ex ante, players do not know
which role they will play and must then calculate their expected payoff
under the assumption that they have an equal chance to be a row or a
column player. An important result proven by Selten (1980) is that an ESS
in such a symmetrized game is a strict equilibrium. Since a mixed strategy
equilibrium by definition is not a strict equilibrium, mixed equilibria
cannot be ESS of asymmetric games. On the other hand, one must notice
that the ‘symmetrization” of the game may work well for some games but
may not fill many asymmetric games, the specific roles not being inter-
changeable (for a more complete discussion on this topic see Binmore and
Samuelson, 2001).

Example |

A game of entry may oppose incumbent firms (player 1) and potential
entrants (player 2). In order to maintain the assumption of large popula-
tions of players, one must imagine here a large number of incumbent
firms, being in a position of local monopolies and many potential entrants
choosing randomly the location of their attack. The numerous possibilities
of matching and the fact that two particular firms may meet only occa-
sionally means that any reputational effect is negligible. What remains
is that each entrant knows she (or he) is facing either an aggressiv:
incumbent or a passive (accommodating) one. Similarly, the incumbent
has only a probability on the chances of entry. Let p be the proportion of
aggressive incumbents and g the proportion of potential entrants wh
actually enter.

The payoffs are given in Figure 7.7.

What is the RD for each category of player? For the local monopolies

Figure 7.7 An entry game

Enter Do not enter

Aggressive -1,-1 8,0
Passive 3,3 8,0




EVOLUTIONARY GAMES AND LEARNING 345

We get:

p=plu; - @']

where: u} =g(—-1)+(1 —¢)8=8-9
and since: u3 =3+ (1 — )8 =8 — 5¢
then: #' = p(8 — 99) + (1 — p)(8 — 59) = 8 — 50 — 4pq
and: p = p[(8 — 99) — (8 — 59 — 4pq)] = p(1 — p)( — 49)
Therefore if g is positive, p is negative; which means that the percentage of
incumbents playing aggressive is continuously decreasing.
Concerning the potential entrants, one gets by the same reasoning:

q = qluf - @]

where ul =3—4pand #® =3q - 4pq

Then: § = g(1 — g)(3 — 4p) and § is positive if p < %. In other words, the
number of potential entrants who actually enter increases contlnuously if
the proportion of aggresswe local monopolies is lower than %.

The phase diagram in Figure 7.8 represents the dynamics of this
example.

It appears clearly on the graph that the only stable point of the RD is the
point corresponding to ¢ =1 and p = 0. The incumbent firms accommo-
date and the potential entrants do enter. Notice that the dynamical process
has other stanonary points: (p=0,9=0),(p=19=1),(p=1,49=0)
and (p = %2 g =0). Among these four steady states, three are NE: two
equilibria in pure strategies pomts (p=0,9=1),(p=1q=0), and the
mixed strategy equilibrium (p =%, g =0). Yet only the equilibrium:
(p =0, g=1) is perfect. It is interesting to notice that it is also the EE of
the game (the only asymptotically stable point of the dynamics). We will
say more on the relationship between evolutionary equilibria and non-
cooperative game equilibria in the next section.

Figure 7.8 Phase diagram of the RD in the entry game

q
1
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We must emphasize that the couple of strategies (p = 0, 4 = 1) also has
the property of being an ESS (see exercise 7.7). In the end, the only SPE of
this game is also an EE and an ESS. This correspondence will be investi-
gated further later.

It is intriguing to see how players who do not chose rationally (they are
just programmed) end up playing a SPE. A criterion like perfection seems
to require a very strong intelligence of the game and a high capacity for
computation, to solve for instance the backward induction type of calcu-
lation. Without any capacity for computation the players can find the
same solution through an evolution process. The only drawback of the
evolutionary approach is that the process takes time. In economic or
business applications, the external conditions of the game may change
rapidly. The evolutionary approach can be applied only for problems not
characterized by rapidly changing environments (see Camerer, 1991, for a
pessimistic view on this matter).

Example 2

We saw above that in the Hawk-Dove game the only EE was the
mixed strategy: (%, %)- Yet, what would happen if the game were played
by two distinct populations? The mixed strategy is no longer an EE in
this case.

Distinguishing two populations in this game means that there are
two (large) groups of individuals who do not give the same value to the
scarce resource: V; # V,. Let us say that the scarce resource is a territory,
and players 1 are residents, while players 2 are foreigners. So, normally,
Vi > V5. For instance V1 = 6, V; = 2, and as in the previous case, the cost
of a fight is C = 16. Then the payoff matrix is as in Figure 7.9.

Now p is the proportion of residents playing Hawk and g is the propor-
tion of foreigners playing Hawk. The Replication equations are:

p = p(ur — #R)
and
9= q(u; — i)

where R is used for residents and I for invaders.
After some calculation, we get:

Figure 7.9 An asymmetric Hawk—-Dove game

Hawk Dove

Hawk 5,7 6,0
Dove 0,2 3,1
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Figure 7.10 Phase diagram of the RD in an asymmetric Hawk-Dove game

q 1
& =
3/8
. [
0 1/8 1p

p=p(1-p)3-8g)
p>0(<0)ifq<§(>%)
q=q(1 —9)(1-8p)
i]>0(<0)ifp<%(>%)

The dynamics can be represented by the phase diagram in Figure 7.10.

The RD shows two stable points (p =0, g = 1) and (p = 1, 4 = 0). These
are the EE of this game. All the players in a given population end up
choosing to be Hawks while in the other population people choose to be
Doves, depending on the starting point. No combination of Hawks
and Doves can be maintained in the same population as an equilibrium
of the evolutionary process. One can check that the two EE are also ESS
(see exercise 7.8).

1.2 Extensions and generalizations to economics:
evolution, rationality and efficiency

7.2.] Connections between Replicator Dynamics, Evolutionary stable
strategies and other equilibrium concepts

In the previous sections we have already underlined some connections
between the evolutionary equilibrium concepts and the standard equilib-
rium concepts of non-cooperative game theory. When we defined an ESS,
we stressed that it was a kind of refinement of symmetric NE. We also
noticed that the ESS were stable stationary points of the dynamical



