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bstract

We investigate the relationship between patenting activity and the population size of metropolitan areas in the United States
ver the last two decades (1980–2001). We find a clear superlinear effect, whereby new patents are granted disproportionately in
arger urban centers, thus showing increasing returns in inventing activity with respect to population size. We characterize this
elation quantitatively as a power law with an exponent larger than unity. This phenomenon is commensurate with the presence
f larger numbers of inventors in larger metropolitan areas, which we find follows a quantitatively similar superlinear relationship

o population, while the productivity of individual inventors stays essentially constant across metropolitan areas. We also find that
tructural measures of the patent co-authorship network although weakly correlated to increasing rates of patenting, are not enough
o explain them. Finally, we show that R&D establishments and employment in other creative professions also follow superlinear
caling relations to metropolitan population size, albeit possibly with different exponents.

2006 Elsevier B.V. All rights reserved.

Scaling
eywords: Patenting; Urban scale; Agglomeration; Network effects;

. Introduction2
Inventors and innovators do not operate in isolation;
he creation of new ideas is a process that very often
nvolves the integration and recombination of existing
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knowledge originating from different individuals,
locations, institutions and organizations (Lenski, 1979;
Mokyr, 2002; Fleming, 2001). The size, density and
compactness of urban centers foster interpersonal
interactions, thus creating greater opportunities for
enhanced information flows. As a result, historically
cities have been the places where much innovation has

occurred. The privileged role that cities have played
in the development of science and technology, and
more broadly, in the generation of inventions and
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innovations – intellectual and material, cultural and
political, institutional and organizational – has been
well documented by historians, urbanists, geographers,
anthropologists and regional economists (Mumford,
1968; Pred, 1973; Jacobs, 1984; Hawley, 1986; Bairoch,
1988; Mokyr, 2002; Braudel, 1992; Hall, 1998; Feldman
and Audretsch, 1999; Redman, 1999; Varga, 1999;
Spufford, 2003; Algaze, 2005).

More recently the role of cities as centers for the
integration of human capital and as incubators of inven-
tion was rediscovered by the “new” economic growth
theory, which posits that knowledge spillovers among
individuals and firms are the necessary underpinnings for
growth (Romer, 1986, 1990; Lucas, 1988). As Glaeser
(1996) points out, the idea that growth hinges on the
flow and exchange of ideas leads naturally to the recog-
nition of the social and economic role of urban centers
in furthering intellectual cross-fertilization. Moreover,
this process is self-reinforcing. The creation and concen-
tration of knowledge in cities increases their attractive
pull for educated, highly skilled, entrepreneurial and
creative individuals who, by locating in urban centers,
contribute in turn to the generation of further knowledge
spillovers (Feldman and Florida, 1994; Glaeser, 1999;
Florida, 2002, 2004). This seemingly spontaneous pro-
cess, whereby knowledge produces growth and growth
attracts knowledge, is the engine whereby urban centers
sustain their continuous development through unfolding
innovation.

It is therefore a compelling question to ascertain
which features of urban societies foment, or hinder,
invention and innovation. To step in this direction we
need quantitative measures of innovation. Historical
evidence notwithstanding, it is not easy to measure
knowledge spillovers (a problem discussed by Krugman
(1991)). This difficulty hampers progress towards the

quantitative understanding of the relationship between
urban characteristics and innovation. Some knowledge
flows do nevertheless leave an evidentiary trail in the
form of patented inventions (Acs and Audretsch, 1989;
Malerba and Orsenigo, 1999; Jaffe et al., 2000; Jaffe and
Trajtenberg, 2002).3

3 We are well aware of the criticism that patents are not necessar-
ily good indicators of generic innovative activity since not all new
inventions are patented, and many economically important types of
innovations (for example a musical theme, an architectural design, a
children’s story, an advertising campaign, a business model or com-
puter software) cannot even be patented (Griliches, 1979, 1990; Pakes
and Griliches, 1980). While these caveats make us cautious about the
use of patent data and prudent in the interpretation of our results, we
nevertheless see patents as the “footprints” of some (by no means all)
inventive activity.
Policy 36 (2007) 107–120

Patenting in the United States is and has always
been largely an urban phenomenon, from the earliest
stages of the nation’s industrialization in the 19th cen-
tury (Pred, 1966; Feller, 1971; Higgs, 1971; Sokoloff,
1988) and continuing during the first half of the 20th
century (Ullman, 1958; Thompson, 1962). More recent
studies have confirmed the importance of a metropoli-
tan setting for the inventive process. Jaffe et al. (1993),
in an examination of patent citations by new to pre-
viously issued patents, find that new patents are 5–10
times more likely to cite previous ones originating from
the same metropolitan area. O’hUallachain (1999) con-
firmed that most of the patents issued in the United States
are awarded to residents of metropolitan areas. Acs et al.
(2002) also find that patenting in the United States is
overwhelmingly concentrated in metropolitan counties,
while Carlino et al. (2005) reaffirm that large metropoli-
tan size and high metropolitan density favor patenting.

Based on this evidence we expect a close and positive
relationship between city size and inventive activity.4

Higher concentrations of individuals and firms in larger
cities can be expected to sustain a larger repertoire
of intellectual capabilities, thereby facilitating the cre-
ation and recombination of ideas. This environment in
turn attracts creative individuals and firms to locate in
cities thus sustaining a “virtuous” cycle of invention and
innovation.5 In the present discussion, we investigate the
quantitative relationship between patenting activity and
the size, measured in terms of population, of metropoli-
tan areas in the United States over the last two decades. In
particular, we will seek to identify whether this relation-
ship is an instance of a general scaling relation. Issues of
scaling are deeply involved in the study of systems whose
macroscopic behavior emerges from general micro-level
interactions among the system’s constituent units (Chave
and Levin, 2003). As discussed further on, a scaling rela-
tionship between metropolitan size and inventive activity
is indicative of general organizational principles repli-
cated across different metropolitan areas, of different
sizes.
It is only a slight exaggeration to say that the most
important attribute of a city is its size; it matters, because
it is the most obvious and all encompassing manifes-

4 We will use the term “inventor”, in a rather restrictive way, to refer
to those individuals who have been granted a patent for their invention.
As in Kuznets (1962) we see “inventive activity” being concerned with
technical inventions, involving the creation of new knowledge and the
combination of existing knowledge.

5 This expectation is a variant of the familiar argument that increases
in urban scale generate greater positive externalities (Marshall, 1890;
Jacobs, 1969).
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ation of a city’s success at attracting and maintaining
nancial and human capital and engaging it in a myriad
f competitive and interdependent activities. It is in this
ense that measures of invention and innovation should
cale positively with city size. We recognize from the
nset that cities differ not only in size but also in the char-
cteristics of their populations. Boston, for example, has
large population of academics, researchers and tech-

ical workers, while proportionally New York City has
ess, and Los Angeles less still. Although such consider-
tions are important for a detailed understanding of each
etropolitan area, in the present discussion we ask if

here are average characteristics of cities that make them
enters of inventive activity. The expectation is that if
arger cities are more inventive, then there should be an
verage trend for measures of invention to increase with
ity size. The quantification of this relationship clarifies
f larger population agglomerations give rise to increas-
ng rates of invention that are simply proportional to pop-
lation, or if instead there are increasing returns to scale.

In order to address questions about the nature
nd magnitude of the scaling relationship between
etropolitan invention and population we use data for

atents granted in the United States between 1980 and
002, spatially aggregated into metropolitan statistical
reas (MSAs). Specifically we use patent data to sin-
le out individual inventors and patent co-authorship
s a source of relational information. In this way, we
ender the location-specific networks of collaboration
mong inventors visible and measurable, and inquire into
heir effects on inventive activity. Economic sociologists
rgue that economic interactions cannot be fully under-
tood without paying attention to the social relation-
hips in which they are embedded (c.f., Polanyi, 1957;
ranovetter, 1985; Uzzi, 1996; White, 2002; Swedberg,
003; Zuckerman, 2003). Analogously we can argue that
he process of invention cannot be well understood with-
ut paying attention to the social interactions among
nventors (Arora and Gambardella, 1994; Powell et al.,
996; Walker et al., 1997; Orsenigo et al., 2001). Social
etworks play an important role in the diffusion of infor-

ation and knowledge since they provide the formal

onnections and informal linkages through which ideas
ow among individuals.6 These knowledge spillovers

6 Social networks have been highlighted as an important facet of
egional innovation (see, e.g., Piore and Sabel, 1984; Breschi and
issoni, 2001; Owen-Smith and Powell, 2004) and are believed to
e the conduits for transferring knowledge and ideas between firms in
region. Much of Silicon Valley’s success, for example, has been

ttributed to its informal networks of friendship and collaboration
mong its scientists, engineers, and entrepreneurs (Saxenian, 1994).
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often occur without the mediation of market mecha-
nisms, transcend the institutional and workplace settings
in which individuals operate, and cut across organiza-
tional boundaries.7 By mapping patent co-author rela-
tionships, we can investigate whether structural features
of metropolitan networks of inventors can help explain
the quantitative scaling relationship between metropoli-
tan patenting and population.8

The remainder of this paper is organized as fol-
lows. The next section discusses what is distinctive
and interesting about scaling relationships. Section 3
describes the U.S. patent data, how it was used to iden-
tify metropolitan inventors and networks of inventors,
and the details of how it was spatially aggregated and
matched with metropolitan population data. Section 4
presents our econometric estimations for the dependence
of patents on metropolitan size, while Section 5 tests
whether features of the co-authorship networks among
inventors help explain the observed scaling between
patenting and population. It may be expected that the
relationship between patenting and metropolitan size is
part of a more general relationship between R&D, and
even “creative” activities, and metropolitan scale. Such
relations are quantified in Section 6. Section 7 concludes
with a discussion of our findings, their clear and poten-
tial consequences, and maps out directions for further
research.

2. Scaling and self-similarity

Although several measures of correlation can be
explored when studying urban invention, scaling has a
particular meaning. Scaling relations parameterize how
a given quantity of interest Y depends on a measure of
the size of the system N (Brock, 1999). In what follows
N will be the number components in a complex social
system, such as the population of a city. When Y obeys
a scaling relation with N, it satisfies on average:
The significance of this “power law” relation becomes
more evident when we consider that it is the solution to
the equation:

7 Scientists, especially those working in fields where commercial
exploitation is common or expected, do, however, also exchange infor-
mation on a market basis (see Zucker et al., 1998).

8 For examples of using patent co-authorship data as evidence of
knowledge spillovers and to construct social networks, see Murray
(2002), Newman (2000), Balconi et al. (2004) and Fleming et al.
(2004).
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Y (λ) = λβY (N), (2)

for arbitrary λ > 0. This equation expresses the relation
between Y for a system of size N, to Y for a system λ

times larger. The existence of scaling implies that such
a relationship – the ratio Y(λN)/Y(N) – is parameterized
by a single number β, usually referred to as the scaling
exponent. In particular Y(λN)/Y(N) is independent of the
system size N; it is only dependent of the ratio between
sizes λ. This property is referred to as scale invariance,
or self-similarity, across scales. If, for example, the rate
of patenting is a scaling function of urban size, then the
number of new patents generated by city of 10 million
will stand in the same proportion to those generated by
a city of one million, as the number of patents generated
by the latter relative to those crated by a city of 100,000,
and so on.

As remarked by Barenblatt (2003), “. . .scaling laws
never appear by accident. They always manifest a prop-
erty of a phenomenon of basic importance. . .the phe-
nomenon, so to speak, repeats itself on changing scales.”
(p. xiii). Such repetition is almost always a hint that
there are underlying dynamical processes that gener-
ate and maintain the same relationship among struc-
tural and functional variables over the range of the
scale—typically many orders of magnitude. This is
the essence of self-similarity (Brown et al., 2000). In
this sense, as suggested by Chave and Levin (2003),
“. . .scaling concepts offer an avenue to study heteroge-
nous assemblies for which the microscopic processes are
not know, and probably not knowable (e.g., in the case of
social systems) except in terms of their statistical prop-
erties.” (p. 551). Thus scaling relations, or “laws”, are
perhaps the best and most extraordinary evidence for the
existence of general features in the immensely complex
dynamics of social and economic systems. Examples
of scaling relationships in the socio-economic realm
include the well-known “Zipf’s Law”, which states that
a city’s size decreases in inverse proportion to its rank
among other cities within the same urban system (Zipf,
1949; Makse et al., 1995); the (rank) size distribution
of firms (Steindl, 1965; Ijiri and Simon, 1977; Amaral
et al., 1997); the distribution of executive compensation
(Walls, 1999); “Pareto’s Law” for the distribution of per-

sonal income (Mandelbrot, 1963), and the rate of crime
in American cities (Glaeser and Sacerdote, 1999).9

Establishing the existence of scaling phenomena for
cities is thus an extremely tempting goal, as it would indi-

9 For a review of scaling analysis in economics see Brock (1999)
and Stanley and Plerou (2001).
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cate the existence of social mechanisms at play across an
entire urban system, integrating together in single swoop
all complexities of interactions among the individuals,
households, firms, and institutions living, residing and
operating in these spaces. Moreover, the successes or
failures of particular urban centers are only meaningfully
assessed relative to these general trends, common to the
entire urban system in which they are embedded. Below
we will be concerned with the existence and quantifica-
tion of inventive activity in metropolitan areas, proxied
by rates of patenting, as well as several other associated
quantities.

Methodologically, we apply a power law functional
form to the relationship between a measure of inventive
activity, Y, and metropolitan size:

Yi,t = αN
β
i,t, (3)

where Y denotes, for example, patenting output or inven-
tive employment in the ith metropolitan area at time t (in
units of a year), N refers to metropolitan population, and
α and β are both constants. Specifically we use the fol-
lowing as our basic econometric estimation equation:

ln Yi,t = α + β ln Ni,t + εi,t, (4)

with ε as Gaussian white noise. The utter simplicity of the
straight line conveys the striking result of self-similarity:
as the size of the metropolitan area changes, the rela-
tionships among its different components and processes
must adjust so that the relationship between size and
inventive output is maintained. If we find that inven-
tive activity behaves superlinearly (β > 1) with respect
to metropolitan size, it exhibits increasing returns to
scale. The exponent β = 1 implies that inventive activ-
ity scales linearly, i.e., proportionally, to metropolitan
population. Finally if β < 1, inventive activities scale sub-
linearly, exhibiting decreasing returns to scale. Thus, the
quantification of scaling relations in terms of β allows
us to determine whether larger cities are more innova-
tive, equally innovative or less innovative per capita than
smaller cities.

3. Metropolitan patenting

Source data was extracted from the U.S. Patent Office
(USPTO) records on all granted U.S. patents from 1980
to 2001 (U.S. Patent Office 2003). Every patent includes
all inventors’ last names (with varying degrees of first

and middle names or initials), each inventor’s home
town, detailed information about the patent’s technology
in class and subclass references (over 100,000 subclasses
exist), and the discrimination of the owner, or assignee,
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f the patent (generally a firm, and less often a uni-
ersity, if not owned by the inventor). Patent filings
o not, however, provide consistent listings of inven-
or names or unique identifiers for the authors. Since
he USPTO indexes source data by patent number and
ot by inventor, a variety of conditional matching algo-
ithms were used to identify inventors, each inventor’s
atents and other inventors with whom the focal inven-
or has co-authored at least one patent.10 The final
atabase includes 2,058,823 unique individual inven-
ors and their patent co-authors, and a total of 2,862,967
atents.

By identifying individual inventors, matching inven-
ors with patents, assigning a location to each inventor –
pecifically a metropolitan statistical area (MSA) – and
inking inventors who have co-authored a patent, it is
ossible to construct patent co-authorship networks for
31 MSAs in the continental United States. (An MSA
ncludes a core city and surrounding counties, which
ogether form a local labor market area.) Patent co-
uthorship refers to the situation where a patent is either
pplied for by more than one individual or lists more
han one individual as a designated inventor (we will
se the terms “co-authorship”, “co-patenting”, and “co-
nventing” interchangeably). Every inventor’s home-
own was matched to a zip code, which was then assigned
o an MSA using the ZIPList5 dataset.11 County level
opulation data was extracted from the Bureau of Eco-
omic Analysis’ “Regional Economic Accounts Tables”
which are available online at http://www.bea.doc.gov).
ounties were assigned to MSAs according to the MSA
efinitions used to create the metropolitan inventor net-
orks. The analyses presented here relied upon all
atents with at least one inventor within a metropolitan
rea. Thus, if inventors from inside and outside an MSA
o-authored the same patent, the patent would appear
n each inventor’s metropolitan area. The networks are
onstructed anew for each year on the basis of the new
atents granted that year.

An examination of the summary statistics for var-

ous measures of metropolitan patenting is revealing,
nd perhaps, intriguing (see Table 1). The variables
atents (denoting new patents assigned to metropolitan-

10 The matching procedures, discussed in detail in Fleming et al.
2004), refine the previous approach of Newman (2000).
11 Ziplist5 (http://www.zipinf.cm) is a commercially available dataset
ontaining every active ZIP code currently defined by the U.S. Postal
ervice for the entire USA. Every zip code is assigned to an MSA

f the zip code lies within a metropolitan county. The MSA county
efinitions used by ZIPList5 are consistent with the Census Bureau’s
000 MSA definitions.
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based inventors) and inventors (signifying the number
of metropolitan-based individuals listed as co-authors in
newly granted patents) are both characterized by a neg-
ative binomial distribution (a Poisson distribution with
over dispersion). As a consequence, these two variables
exhibit great variation, as indicated by the coefficient of
variation, across metropolitan areas. This variation, com-
bined with the skewness characteristic of the negative
binomial distribution, hints at one of our main results,
namely, that patenting is disproportionably concentrated
among the largest metropolitan areas. The mean for
both variables increased from 1980 to 2001 (and did so
every year in the 22 year span), reflecting the increase in
patenting activity during the 1980s and 1990s. The mean
for patents per capita, often referred to in the literature
as “patent intensity”, the number of patents per 1000
metropolitan inhabitants, also increased steadily during
the period covered by the data, providing additional evi-
dence for acceleration in patenting rates. (The behavior
of inventors per capita, not reported in the table, behaved
similarly to patents per capita.)

Surprisingly these increases in patenting rates are
not due to higher productivity. A simple measure of
metropolitan inventive productivity, patents per inventor,
the ratio of new patents to the total number of inventors;
steadily and significantly decreased between 1980 and
2002. A similar picture is conveyed by another measure:
patenting team size, that is, the number of inventors asso-
ciated with a patent. This variable was calculated for
every patent in the database and then averaged across
metropolitan areas (see Table 1). The metropolitan mean
for average patenting team progressively increased from
1980 to 2001 and the variable’s relatively small coef-
ficient of variation indicates that this was the common
trend across metropolitan areas.12 Examining the behav-
ior of patenting team size as well as the proportion of
total metropolitan patents authored by single inventors
(referred to as single inventor patents in Table 1) indi-
cates that patenting became an increasingly collective
activity over the 22 years from 1980 to 2002. The com-
mon trend across U.S. urban systems over the last two
decades has been for the number of metropolitan patents
and inventors to quickly increase, but this change was
also associated with a steady decrease in inventive pro-

ductivity per inventor and recourse to larger patenting
collaborations.

12 The correlation between the metropolitan average for patenting
team size and metropolitan population is very low, in the order of 0.09
every year, suggesting that the increase in the size of inventor teams
was not a location-specific phenomenon.

http://www.bea.doc.gov/
http://www.zipinf.cm/
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Table 1
Summary statistics for metropolitan variables

Year Patents Inventors Patents per
capita

Patents per
inventor

Patenting
team size

Single
inventor
patents

Connectivity Density Clustering LC size R&D
employment

Supercreative
professions

1980 1987
Mean 689.82 633.29 0.97 1.03 1.64 0.509 733.75 0.02 0.43 0.10 949.65
S.D. 1472.1 1274.38 0.91 0.22 0.27 0.213 1276.21 0.03 0.21 0.11 2095.20
CoVa 2.13 2.01 0.94 0.21 0.16 0.42 1.74 1.50 0.49 1.10 2.21
Median 175 182 0.69 1.01 1.62 0.52 109 0.01 0.45 0.06 122
Min 3 2 0.03 0.57 1 0 1 0 0 0.01 0
Max 12,990 10,220 5.78 2.49 2.89 1 7813 0.11 0.87 0.64 13,637
Number of

MSAs
331 331 331 331 331 331 331 331 331 331 227

1990 1997
Mean 858.33 955.11 1.14 0.88 1.92 0.418 1262.80 0.04 0.59 0.11 1146.08
S.D. 1690.91 1823.79 1.02 0.16 0.33 0.193 2370.26 0.06 0.23 0.15 3611.90
CoVa 1.97 1.91 0.89 0.18 0.17 0.46 1.88 1.50 0.39 1.36 3.15
Median 243 284 0.82 0.86 1.91 0.41 233 0.02 0.62 0.06 133
Min 2 2 0.02 0.47 1 0 3 0 0 0.08 8
Max 12,882 12,594 6.16 1.55 3.13 1 15,717 0.33 1.01 0.68 34,853
Number of

MSAs
331 331 331 331 331 331 331 331 331 331 266

2000 2002 1999–2001b

Mean 1724.24 2069.19 2.06 0.79 2.52 0.377 4638.05 0.05 0.81 0.15 1280.52 36,985.47
S.D. 3753.69 4217.39 2.61 0.18 0.45 0.215 8620.60 0.07 0.14 0.16 3952.58 70,483.01
CoVa 2.18 2.04 1.27 0.23 0.18 0.57 1.86 1.40 0.17 1.07 3.09 1.91
Median 424 557 1.34 0.77 2.51 0.33 637 0.02 0.83 0.09 146 13,420.17
Min 6 10 0.06 0.42 1.33 0 39 0 0.43 0.15 9 296.67
Max 38,170 37,051 13.09 2.93 4.02 1 58,014 0.25 1.11 0.80 38,000 541,033.33
Number of

MSAs
331 331 331 331 331 331 331 331 331 331 278 331.00

a CoV, coefficient of variation.
b Yearly variable values averaged over this period.
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. Metropolitan patent co-authorship networks

What part of the invention process is captured by
he co-authorship links between metropolitan inventors?

hat do these links imply in terms of information flow
nd the possible effects of such flows upon subsequent
nventive productivity? Singh (2004) reports significant
ow of information between patent co-authors, as mea-
ured by citations from future patents that are linked
y direct – and even indirect – collaborative ties. The
esults hold even after econometrically controlling for
he greater likelihood of a citation arising simply because
t refers to work in similar technologies. Singh goes on
o demonstrate that almost all of the geographical cita-
ion “spillovers” in the United States (e.g., Jaffe et al.,
993) result from co-authorship networks. (Breschi and
issoni (2004) find similar results for European inven-

ors.) Thus, agglomeration of connections among inven-
ors can be expected to increase inventiveness if connec-
ivity indeed enhances information flow and knowledge
pillovers.

Even if we see the links forged by inventors in the
ct of co-inventing as possible channels for knowledge
pillovers, we also echo the cautionary remark made
y Hussler (2004), who, using terminology from Hur
nd Watanabe (2001), views the spillovers evidenced by
atents as “intentional spillovers”. Inventors are often
ery selective in what prior knowledge they chose to
ite as relevant to their invention.13

A metropolitan co-authorship network of inventors
ncludes isolated “nodes” (inventors who are the sole
uthors of patents), small clusters of inventors connected
o each other through shared co-authorship, and larger-
ized components grouping many metropolitan inventors
ogether. Individual clusters and components are often
inked through key individuals (with high degree of
betweenness”) who have connections to multiple inven-
ive communities. We will invoke four simple graph-
heoretic descriptions of networks – connectivity, den-
ity, clustering and the size of the largest component –
hen exploring the impact of inventor network structure
n the scaling relationship between metropolitan patent-
ng and population. Connectivity is simply a measure of

ow many connections, or ties, there are in the network.
he higher this measure is, the greater the number of
atenting collaborations present within a metropolitan

13 As discussed by Jaffe et al. (1993), Globerman et al. (2001) and
reschi and Lissoni (2004), the large majority of citations to previous

elevant patents (“prior art”) are added by patent examiners rather than
y the inventors authoring patents.
Policy 36 (2007) 107–120 113

area. Conversely, for fixed number of nodes the higher
the measure the more inventors there are linked to each
other. As discussed above it seems plausible, a priori, to
assume there is a close relationship between connectivity
and patenting rates. The average density of connections
among inventors in the network is defined as the actual
number of ties, L, divided by the potential number of
ties between N nodes (i.e., density = L/(N(N − 1))/2). The
naı̈ve expectation is that more highly connected and
denser networks will have greater flows of information
among inventors thereby making the inventors in such
networks more productive.

In order to define average network clustering we fol-
low Watts and Strogatz (1998) and first calculate indi-
vidual clustering for each node as the number of actual
“triples” for each inventor (i.e., the number of different
pairs of an inventor’s collaborators that have worked with
one another and are therefore linked). Inventors with one
or zero ties receive a clustering score of zero. This sin-
gle node clustering is then averaged over the whole set
of inventors within an MSA. We further normalized this
number to produce an averaged MSA clustering coef-
ficient by dividing the average node clustering by the
theoretical clustering of a random graph of commensu-
rate size, that is, with the same number of inventors, and
mean degree (the degree of a node in a graph is the num-
ber of edges linked to the node.). Thus clustering is a
measure of agglomeration of inventors in the sense that
it measures the probability that an inventor connected
to another also collaborated with his other co-authors.
The largest component of a network is the largest set of
inventors that can trace a direct or indirect collaborative
connection to one another. The size of the largest com-
ponent is calculated as the fraction of inventors that had
a collaborative tie within the largest component in the
MSA. The largest component is thus the largest inventive
community within a metropolitan network of inventors
and in this sense measures agglomeration effects beyond
nearest neighbor.

Glancing at the summary statistics (Table 1) for
network density and size of the largest component
it is notable how non-dense co-authorship metropoli-
tan inventor networks are, as well as the smallness of
the largest component. The averaged number of co-
authorship links is systematically very low, between 1
and 2, across time and urban centers. These observa-
tions, combined with another – the relatively high level
of clustering – provide a first hint that overall network

connectivity is not a significant determinant of patenting
output. The high clustering levels insinuate a picture of
inventors linked to other inventors in small co-authorship
groups that therefore will not scale up with city size.
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5. Scaling of metropolitan invention with
population size

Our primary interest is to elucidate the nature of
the statistical relationship between a metropolitan area’s
inventive output, measured by the number of new patents
granted per year to inventors residing in the correspond-
ing MSA, and the size of its population. Specifically
we want to know if there is a general average trend for
the increase of invention with metropolitan population
size. The use of the term average requires some expla-
nation: we use it here to allow us to intentionally neglect
metropolitan specificities. In this sense, by taking many
cities with different characteristics, we expect such char-
acteristics to be effectively averaged over. Our interest in
scaling leads us to estimate equations without the con-
trols for demographic, social or industry characteristics
that we would surely include if our interest instead was
to estimate a model for metropolitan patenting (as in
Carlino et al. (2005) or Strumky et al. (2005)).

We assume a power law relationship between
metropolitan population (N) and newly granted
metropolitan patents (P) and use Eq. (4) as our esti-
mation equation.14 The data on metropolitan population
was obtained from the Bureau of Economic Analysis’
Regional Economic Accounts (BEA, 2005). We availed
ourselves of the richness of a dataset containing cross-
sectional and time-series data by estimating the scaling
coefficient using a panel data fixed effects feasible gen-
eralized least squares (FGLS) framework (assuming het-
eroskedastic error structure across cross-sectional units
(MSAs) and AR(1) serial autocorrelation within cross-
sectional units).

The estimated value for the coefficient, model 1 in
Table 2, is β = 1.29 (with a 95% confidence level of
1.26 ≤ β ≤ 1.32); the adjusted R2-value of 0.72 indicates
a good log-linear fit. We also estimated the exponent β

for three individual years, 1980, 1990 and 2000 (using
an OLS estimation procedure with a correction for het-
eroskedasticity): the statistically significant (at the 95%
confidence level) coefficient values are, respectively,
β = 1.29, 1.25 and 1.26 with adjusted R2-values ranging
from 0.69 to 0.73.
The scaling relationship between metropolitan pop-
ulation and metropolitan invention is superlinear, or to
use the language of economics, the relationship exhibits

14 Transforming the patent count data using the natural logarith-
mic function has the effect of changing its distribution into a normal
one—as verified both by visual inspection of histograms and by per-
forming the Wilks–Shapiro test (for individual periods and across all
periods for all MSAs). Ta
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ncreasing returns to scale (i.e., β > 1). Not surprisingly,
larger metropolitan population is associated with a

reater output of new patents; what is surprising is the
agnitude of the increasing returns to scale. On aver-

ge we can expect a city like Philadelphia, with about
.5 million people to generate almost 19 times more
atents than a city of the size of Eugene, OR or Spring-
eld, MO, which are about 10 times smaller. This find-

ng suggests two alternative explanations: either inven-
ors are individually more productive in a larger city,
r there are a disproportionate number of inventors in
arger metropolitan areas. In the next section, we inves-
igate which of these effects is at the root of our scaling
esult.

. Agglomeration or network effect?

What lies at the origin of the increasing returns of
cale of invention with metropolitan size? As anticipated
bove, we advance and test two alternative hypotheses.
he first is that the number of inventors in a city is

oughly proportional to population, perhaps supported
y the simplistic assertion that each individual has an
qual probability to become an inventor, taken together
ith the expectation that a larger metropolitan popula-

ion leads to higher inventive productivity, i.e., to more
nventions per inventor. In fact, the number of connec-
ions generally grows superlinearly with the number of
odes. In the simplest scenario, for example, the total
umber of connections between N inventors connected
ll to all grows quadratically with N, as N(N − 1)/2, set-
ing an upper bound on β ≤ 2. In reality we expect that for
arge N, not all inventors will connect to all others, and
hat the number of links should scale with a smaller (but
till superlinear) exponent, reflecting constraints on indi-
idual time and effort to sustain multiple relationships.
n this way by measuring the scaling of connectivity with
etropolitan population we may be able to explain the

uperlinear relation between invention and population,
ven if the number of inventors remains a fixed frac-
ion of the number of inhabitants across many different

SAs.
The second, alternative, hypothesis is that inventors

re not more productive in larger cities but that their num-
ers increase superlinearly with metropolitan size. This
ypothesis is commensurate with a theory of cities as
ttractors for the “creative class” (Florida, 2002, 2004).
n this scenario network effects, although present, are

ifferent and more subtle. Indeed it maybe the possi-
ility of other productive relations (financial, cultural,
tc.) beyond co-authorship, that will attract an inventor
o a city. Then we should not expect a close correla-
Policy 36 (2007) 107–120 115

tion between co-authorship connectivity measures and
patenting rates.

It is also conceivable that the mechanisms underlying
the two complementary hypotheses are at play simulta-
neously. The two pure scenarios (but not their mixture)
are easy to distinguish: either the data reveals that the
relationship between the number of inventors and pop-
ulation is linear, and the number of patents per inventor
versus metropolitan size is superlinear (hypothesis 1),
or vice versa (hypothesis 2). In the first case, we further
conjecture a close correlation between co-authorship
measures of connectivity and patenting rates, whereas
such correlation should be weaker if the second scenario
is realized.

Regressing the number of metropolitan inventors
on metropolitan population, we find that the relation-
ship between the number of inventors and population
is clearly superlinear, with a coefficient β = 1.24 and
a 95% confidence interval of 1.22 ≤ β ≤ 1.28 (model
2 in Table 1). Moreover, the relationship between the
number of new metropolitan patents and the number of
metropolitan inventors (model 3 in Table 2) is remark-
ably linear with a coefficient β very close to unity
(0.97 ≤ β ≤ 0.99). So, indeed more inventors result in
more patents, but in a nearly one-to-one relationship, a
result that vindicates the second hypothesis. The absence
of agglomeration externalities for patenting productivity
was already revealed by the summary statistics for the
variables patents per inventor and size of the patenting
team (discussed in Section 3). Regressing patents per
inventor on population size drives the point even further
home: the value of the estimated coefficient is 0.028 (see
model 4 in Table 2), showing no significant correlation.

What about possible co-authorship network effects?
We find that the relationship between the number of
metropolitan patents and the level of connectivity of a
metropolitan network of inventors is clearly positive but
sublinear, with a pooled coefficient of β = 0.82 (model
5 in Table 2). Thus increasing connectivity, the measure
of the extent to which inventors are linked to each other
through co-inventing, does not result in proportionately
greater patenting output, contradicting the main thrust of
the first hypothesis. The effect of increasing the size of
the network’s largest component, while positive, is well
below linear with a coefficient β = 0.26 (see model 6 in
Table 2). The effect of network clustering on patenting
is also sub-linear, with a coefficient β = 0.72 (model 7 in
Table 2). The effects on patenting of network density are

negligible (model 8 in Table 2).

The combination of these results strongly suggests
that, in spite of positive correlations, measures con-
nectivity in co-authorship networks are not related in
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any simple way to the scaling of inventiveness with
metropolitan size. Instead the simplest scenario for
increasing returns in metropolitan patenting rates with
population is that they are the result of the self-similar
disproportionate presence of more inventors the larger
the city, while single inventor productivity stays constant
across the entire urban system.

7. The scaling of R&D activities with
metropolitan size

Most inventors do not do their inventing in the privacy
of their garages. Inventors tend instead to work within
organizations and institutions, both public and private,
profit and non-profit, which encourage and reward inven-
tive activity. The occasional “accidental” discovery not
withstanding, most patenting is the result of concerted
effort, by individuals and organizations, requiring a sub-
stantial infrastructure and commitment of resources.
Patenting is the culmination of successful research—for
every patent granted by the U.S. Patent Office there
are many applications that are rejected and even more
research efforts that failed or dead-ended. Patenting is
perhaps better seen as one type of output of an overall
research and development effort. All of these consid-
erations suggest that the scaling relationship between
patenting and metropolitan size might be an instance
of that that between R&D efforts and metropolitan
size.

One way to measure research activity at the
metropolitan level would be to construct a measure of
overall R&D investments by aggregating data on both
private and publicly funded research carried out in each
metropolitan area. There are, however, severe limitations
on the availability of the data needed to construct such
a variable. Nevertheless, by using data on private sector
R&D employment we constructed what we believe is a
proxy measure adequate for our purposes.

In the United States, there are three major sources
of R&D funding: university sponsored research, private
sector research investments, and Federal government
research outlays. Using data provided by the National
Science Foundation on research and development fund-
ing by “performing sector”, we calculated that univer-
sity sponsored research has averaged only 9% of total
R&D yearly expenditures between 1960 and 2003 (U.S.
National Science Foundation, 2003). The proportion
of all newly granted patents accounted for by univer-

sity based inventors is equally small—between 1.3%
and 3% for every year between 1980 and 2001. From
1960 to 2003 federally provided R&D funding averaged
only 12.1% of total yearly R&D expenditures and has
Policy 36 (2007) 107–120

remained below 10% since 1994 (U.S. National Science
Foundation, 2003). Inventors based at Federal research
laboratories account for a miniscule proportion of newly
granted patents, on average, less than 1% a year between
1980 and 2000. Federal and university expenditures on
R&D combined represent an average of 22.1% of total
yearly research outlays for the period 1960–2003 (U.S.
National Science Foundation, 2003). The private sector
is by far the most significant source of R&D investments
and patents.

The nature of private sector data makes difficult,
though, to construct a metropolitan-based measure of
private research efforts. Data on private sector R&D
expenditures is available for the nation as a whole and
at the corporate level for publicly held companies. Cor-
porate level R&D investment data is contained in com-
panies’ annual reports but these reports present only
total company-wide expenditures undertaken by cor-
porate headquarters. Research and development activ-
ities do not often take place in the same locations as
corporate headquarters, and a more disaggregated geo-
graphic breakdown of research efforts is not typically
provided by corporate reporting of R&D efforts. But
even if metropolitan-level data on private sector R&D
investments is not available, there is data on metropoli-
tan private sector R&D employment. Is the available data
a suitable substitute?

There is reason to think that private sector R&D
employment closely mirrors private sector R&D invest-
ment. The Pearson correlation between total R&D
expenditures and national civilian employment of sci-
entists and engineers (Statistical Abstract of the United
States, 2005) over the period 1985 and 2003 is 0.97. Data
specific to private sector R&D employment is available
from the Economic Census for the years 1987, 1992,
1997 and 2002 (this data is described further below);
the correlation between private sector R&D employ-
ment at the national level and total private sector R&D
expenditures for these 4 years is 0.95. The correlation
between private sector R&D employment and total R&D
investments, for the same set of Economic Census years,
is 0.89. These correlations suggest that employment in
research and development is a useful proxy for private
sector R&D efforts. If we are willing to assume that the
strong correlation between private sector R&D invest-
ments and private sector R&D employment found at the
national level is replicated at the metropolitan level –
an assumption made more plausible by considering that

labor costs represent the bulk of R&D expenditures – a
measure of scientific and technical employment at the
level of MSAs would be a statistically suitable stand-in
for private sector metropolitan R&D investments.
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Table 3
Scaling of metropolitan R&D employment with population (dependent variable: metropolitan R&D employment)

1987 1997 2002

Constant −11.37 −12.75 −12.78
Population 1.211 (0.081) 1.174 (0.052) 1.185 (0.050)
Adjusted R2 0.63 0.67 0.69
N 266 278

A es. All of the coefficients are significant at the 99% confidence level.
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Table 4
Estimation results for metropolitan “supercreative” employment (data
averaged for 1999–2001)

Dependent variable (1) Supercreatives (2) Inventors

Constant −4.97 −4.08
Population 1.147 (0.021)
Supercreatives 1.082 (0.037)
Number of MSAs 331 331
Adjusted R2 0.89 0.75

Table 1 for the summary statistics), and then regressed
the natural logarithm of supercreative professionals
against metropolitan population (see Table 4). The result

15 According to the definition put forward by Florida (2002, pp.
327–329) “supercreative” professions are “Computer and Mathemat-
ical, Architecture and Engineering, Life, Physical and Social Science
Occupations, Education, Training and Library, Arts, Design, Enter-
tainment, Sports and Media Occupations”. The occupational classifi-
umber of MSAs 227

ll variables in natural logarithmic form. Standard errors in parenthes

We assembled data from the Census Bureau’s Eco-
omic Census for metropolitan employment in private
ector establishments engaged in research and develop-
ent work for the years 1987, 1992, 1997 and 2002.
he North American Industrial Classification System

NAICS), used in the 1997 and 2002 Censuses, includes
ector 5417, “scientific research & development ser-
ices”, while the Standard Industrial Classification (SIC)
ystem, used in the 1987 and 1992 Censuses includes
ector 873, “research, development, and testing ser-
ices” (U.S. Census Bureau, 1987, 2002) These two
ategories cover establishments engaged in conducting
riginal investigation undertaken to gain new knowledge
research) and/or the application of research findings
r other scientific knowledge for the creation of new
r significantly improved products or processes (devel-
pment). Employment by these two sectors in effect
onstitute private (i.e., for profit) sector research and
evelopment employment. The employment data from
he Economic Census was matched to data on metropoli-
an patenting and population using consistent definitions
f metropolitan areas.

We probed the relationship between metropolitan pri-
ate sector R&D employment and size of metropoli-
an population by estimating Eq. (4); specifically we
egressed the natural logarithm of R&D employment
n the natural logarithm of population (using OLS
ith a correction for heteroskedasticity) with data for

he years 1987, 1997 and 2002 (see Table 3). The
elationship between private R&D employment and
etropolitan population is clearly superlinear with a

caling coefficient significantly greater than one (the
5% confidence interval excludes β = 1) in each of
he 3 years, signifying that larger metropolitan areas
lso have a disproportionate share of R&D inventive
mployment. While the adjusted R2-values for the three
stimations are all greater than 0.60, there is greater
ispersion of the data around the scaling relationship

han for the relationship between inventors and popu-
ation. This greater dispersion is not surprising given
hat research and development employment is a more
eterogeneous population than inventors—after all not
All of the variables are in natural logarithmic form. Standard errors in
parentheses. All of the coefficients reported in the table are significant
at the 99% confidence level.

every employee of an R&D establishment is engaged in
invention.

We were also curious as to whether the superlinear
relationship between metropolitan R&D employment
and population is replicated using a broader categoriza-
tion of “inventive” employment. To this end, we exam-
ined the statistical relationship between the number of
people involved in a select few “creative” professions
and the corresponding metropolitan population size, as
well as the relationship between creative employment
and number of inventors. We adopted Richard Florida’s
definition of “supercreative” employment, which con-
sists essentially of all scientific, artistic, educational and
entertainment professionals (Florida, 2002).15

We averaged the data on metropolitan supercreative
employment for the 3 years, 1999, 2000 and 2001 (see
cations were derived from the Standard Occupational Classification
System (SOC) introduced by U.S. Bureau of Labor Statistics in 1998.
The SOC classification data is constructed using the North American
Industrial Classification System (NAICS). We believe it is reasonable
to suppose that most inventors are drawn from these professions.
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indicates a clear superlinear scaling relationship between
supercreative professionals and metropolitan population
size with 1.10 ≤ β ≤ 1.18 at 95% confidence level and a
good liner fit (R̄2 = 0.89). Large metropolitan areas also
have a disproportionate share of “supercreative” individ-
uals. The relation between metropolitan inventors and
supercreative professionals is in turn approximately lin-
ear with 1.01 ≤ β ≤ 1.16 at 95% confidence level (see
Table 4) suggesting that inventors may be a reasonable
stand-in for total number of professionals engaged in
creative activities, albeit slightly over-represented rela-
tive to the more inclusive definition for supercreatives,
or vice-versa.

8. Discussion

We started the present inquiry with the objective of
quantifying the scaling relationship between metropoli-
tan innovation and population, across cities with very
different population sizes as well as many other dis-
tinct characteristics. Our statistical results indicate that
larger metropolitan areas have disproportionately more
inventors than smaller ones and generate more patents
according to essentially the same relation. In fact larger
cities are tangibly more inventive per inhabitant than
smaller ones, thus producing increasing returns in inven-
tion to population scale. This property is quantified by
exponents β > 1, characteristic of superlinear scaling in
patents (and number of inventors) with population size.

The totality of our results paint a picture of inven-
tion where agglomeration – the concentration of inven-
tors in large metropolitan areas – does not increase on
average the productivity of the individual inventor. Nev-
ertheless, access to a greater population of inventors
could boost the productivity of individuals susceptible to
becoming inventors, which would eventually result into
a larger number of inventors. In this case, however, aver-
age inventive productivity among established inventors
does not increase. In this sense, we cannot distinguish
whether any impact of agglomeration on inventiveness
arises from attracting disproportionately more inventors
to an area or by boosting the inventiveness of proto-
inventors who were already in the area.16

Most likely in our opinion there are a range of infor-
mal interaction effects, not captured by co-patenting

links but present in a larger population, that lead to
the tendency for inventive professionals to concentrate
disproportionately in larger metropolitan spaces. The
choice made by major innovators and inventors, whose

16 We thank Jan Rivkin for this observation.
Policy 36 (2007) 107–120

skills and expertise make them highly mobile, to remain
in a given metropolitan area indicates that something
about the structure of these regions matters (Almeida
and Kogut, 1994, 1997). The location-specific charac-
teristics typically mentioned as important in this regard
include the tendency of large firms (and especially their
R&D labs) to locate in the larger cities and the critical
mass of well-educated individuals also to be found there,
both of which were explored here. The presence of an
(informal) social network of inventors in a metropolitan
area could itself play an important, if difficult to measure,
role in attracting inventors to an area.

Gell-Mann (1994, p. 97) attributes to Mandelbrot the
admission that “early in his career he was successful in
part because he placed more emphasis on finding and
describing power laws than on trying to explain them”.
We are in good company then and believe that our man-
ifestly empirical investigation, which sought to identify
and describe scaling phenomena in the realm of urban
invention, is a useful exercise. But we do recognize that
the fundamental question left open for future work is
to explain the identified scaling relationships quantita-
tively, by integrating them into a predictive theory of
endogenous (population and economic) growth. At a
qualitative level we have shown that there are good indi-
cations of a connection between the size of a city and its
pull on intellectual capital. Larger cities are also dispro-
portionately the seats of R&D institutions which, either
as the cause or the effect, help support a range of inno-
vative activities. Finally while we do not find a convinc-
ing link between co-authorship network properties and
the relationship between patent output and metropolitan
size, we have shown tentative indications that numbers
of inventors and patents may be symptoms of a much
larger, if more tenuous, self-similar phenomenon. As it
has been true for as long as there have been cities, cre-
ative human capital resides disproportionately in larger
cities.
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